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Introduction

Nonlinear approaches to assess exposure-outcome relations

are still fairly uncommon in public health research. The

predominant reliance on linear associations and catego-

rized continuous predictors is surprising, given the

availability of powerful alternatives with sophisticated and

user friendly software implementations. This simplicity

threatens one of the major aims in regression analyses: to

obtain an unbiased mean estimate of the dependent variable

conditional on the predictor variables.

In the first part of this non-technical series, we will

briefly discuss problems of linear models and categorized

continuous predictor variables. Polynomial and fractional

polynomial approaches will be introduced, as well as

information on selected statistical procedures in main

software packages (Table 1). In the second part, splines

and non-parametric approaches will be illustrated (Schmidt

et al. 2012).

Linear modeling and categorization: the common

approaches

Two approaches are commonly used to handle exposure-

outcome relations: first, the association is assumed to be

linear. This implies that the effect on the outcome is the

same across the entire exposure range. If deviations from

linearity are strong, relevant associations may be missed

altogether, for example with threshold, U- or J-shaped

associations (May and Bigelow 2005). The high acceptance

of untested linear associations reflects the technical sim-

plicity of this approach along a lack of elaborated theory

development that allows for a priori assumptions regarding

the shape of dose-response relations (Becher 2005; Beck

and Jackman 1998). However, on the contrary to current

practice, theoretical shortcomings should encourage a

careful data driven model selection.

Second, continuous predictors are frequently catego-

rized; either based on statistical considerations like the

median, quartiles and reference limits or based on sub-

stantial considerations like biological plausibility. An

example for the latter is alcohol intake per day below or

above WHO thresholds of risk drinking. Categorizing con-

forms to the clinical practice of distinguishing the presence

or absence of an attribute and seems to provide simple

interpretation of the results. Yet, numerous shortcomings

exist (Royston et al. 2006; Royston and Sauerbrei 2008):

1. Information is lost because all cases within one

category are treated as being equal.

2. Because of this simplification and due to the inflated

number of parameters with many categories, statistical

power is lost.

3. The assessment of interactions is complicated and

unreliable.
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4. Cut-off points are more or less arbitrary; yet, associ-

ations may strongly depend on the cut-offs and may

vary across study populations.

5. When dichotomizing, no information is available on

potential nonlinearities at all.

6. The risk of chance findings is increased in case of

sparse categories.

7. Categorization entails the risk of bias resulting from

misclassification (Rothman et al. 2008). This is

particularly threatening when forming subgroups of

substantially different size in the presence of mea-

surement error.

8. A test for trends is no adequate substitute for an

appropriate nonlinear model (Maclure and Greenland

1992).

Despite these shortcomings, a categorization may offer

valuable explorative insights and should not be dismissed

altogether (May and Bigelow 2005).

Option 1: polynomial transformations of the dependent

variable

One basic option is to conduct a simple nonlinear trans-

formation of the predictor variable x. Quadratic (x2) and

cubic polynomials (x3) are frequently used for this purpose.

The transformed parameter is most commonly entered into

the regression model in addition to the linear parameter. If

the nonlinear parameter fails to improve the prediction, this

may be determined based on a deviance test (Royston and

Sauerbrei 2008), a linear approach might be sufficient. Yet,

some caution is indicated. A simple transformation pro-

vides limited flexibility in capturing nonlinearities.

Particularly towards the end of the exposure range, a poor

und implausible performance is common (May and Bige-

low 2005; Royston et al. 1999).

Option 2: fractional polynomials (FPs)

An important and powerful extension to the first option is

the combination of polynomial and logarithmic functions,

as offered by FPs (Royston et al. 1999, 2006; Royston and

Sauerbrei 2008). One main advantage is a much wider set

of functional forms. Again, a single function covers the

whole exposure range. For many applications, first degree

FPs suffice. These take on the form b1xp, with x being the

predictor of interest, b1 the beta coefficient and p the power

of the polynomial, which may be fractional. The power is

commonly chosen from -2, -1, -0.5, 0, 0.5, 1, 2, and 3.

For example, if p = 2, the term resembles a quadratic

polynomial, whereas p = 0.5 refers to the square root and

p = 1 to a linear function. By convention, x0 denotes log

x. Depending on theoretical considerations, higher degree

FPs may be advisable. On contrary to the monotonous first

degree FPs, second degree FPs allow for one maximum or

minimum. Second degree FPs take one of two forms: (1)

b1xp ? b2xq or (2) b1xp ? b2xp 9 log(x). The idea is to

find a combination of powers p and q that optimize model

fit. The most common option to accomplish this is to

compare different models based on deviance tests, using

pre-specified p values. Information criteria are another but

less frequently applied option (Burnham and Anderson

2004; Royston and Sauerbrei 2008).

Powerful commands (mfp in Stata/SAS/R) are available

to set up and select multivariable models comprising sev-

eral nonlinear associations (Sauerbrei et al. 2006). The user

specifies two significance levels for an automatic selection

procedure: one for the selection of variables and one for the

Table 1 Selected commands to handle fractional polynomials in STATA, SAS, and R

Command

(program)

Description

fracpoly

(STATA)

Conducts nonlinear analyses based on fractional polynomials for a single continuous predictor variable while controlling for

covariates

fracpred

(STATA)

Creates variables containing the prediction, deviance residuals, or standard errors of fitted values

mfp (STATA)

mfp (SAS)

mfp (R)

Implements a multivariable model-building approach for fractional polynomials. Adequate powers for all continuous

predictors in the regression model are selected based on deviance tests. Options to deal with predictors with a spike at zero

are available (catzero)

mfpi (STATA) Models interactions between categorical and continuous covariates using fractional polynomials (Royston and Sauerbrei

2004)

gdelta (STATA) Performs pre-transformations on a continuous predictor variable to be used in an analysis with fractional polynomials, for

example to avoid problems with non-positive values and with extreme values at both ends of the distribution (Royston and

Sauerbrei 2007)

An extensive set of STATA commands of relevance for the calculation of fractional polynomials is available from: http://www.imbi.uni-freiburg.

de/biom/Royston-Sauerbrei-book/
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selection of powers. A backwards elimination strategy is

used to drop variables from the model yielding a non-sig-

nificant increase in deviance. A detailed description of the

test procedure is available elsewhere (Royston and Sauer-

brei 2007, 2008).

A disadvantage of FPs is the inability to handle non-

positive predictor values, but suitable transformations are

available (Royston and Sauerbrei 2008), as well as options

to deal with predictor variables with a spike at zero

(Royston and Sauerbrei 2008; Royston et al. 2010) and

interactions (Royston and Sauerbrei 2004).

Example

All approaches have been applied to cross-sectional data

from a general population survey, SHIP-Legende, in West

Pomerania, Germany. Data comprise 2025 adults aged

29–85 (Volzke et al. 2010). We predicted an affirmative

response to the questions ‘‘When I was growing up, I did

not have enough to eat’’, and ‘‘People in my family called

me things like stupid, lazy, or ugly’’, both items of the

Childhood Traumata Questionnaire (Wingenfeld et al.

2010).

As we applied logistic regression, it is important to

emphasize the distinction between nonlinear associations

and nonlinear statistical models. We used a nonlinear sta-

tistical model to assess linear and nonlinear associations

between age and CTQ items.

Results illustrated strong disparities between the estab-

lished exposure-outcome relations on the nutrition item.

Categorical representation of age showed curvilinear rela-

tion when using deciles, but not when using quintiles

(Fig. 1a). A quadratic power transformation of age sug-

gested a particularly strong ascent of nutrition deficits

among the eldest (Fig. 1b).

Fractional polynomials yielded different results,

depending on their degree (Fig. 1b). First degree FPs

describe a monotonous increase. The second and third

degree FPs indicated a curvilinear association, with the

third degree FP having a steeper ascent and a better fit

according to information criteria (Fig. 1b). Deviance

residuals of second and to a lesser extent third degree FP

revealed substantial misfit (Fig. 2).

Regarding the second item on being called stupid, the

results across methods were more similar. Little is gained

by applying higher degree FPs, which is reflected in the

selected powers for FPs based on deviance tests and by the

larger Akaike information criteria for models requiring

more degrees of freedom compared to a first degree FP.

The behaviour of the different approaches addressing

nonlinearities in the latter example is typical for public

health applications, whereas the former indicates the need

to address strong local changes to the shape of the curve in

some situations. We know that only subjects within a

narrowly defined age range were subject to the exposure

‘‘nutrition shortages during childhood’’ after World War 2.

The second article in this series will therefore introduce
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Fig. 1 a Age as a linear and categorized predictor for ‘‘not having

enough to eat’’, Study of Health in Pomerania, West Pomerania,

2007–2010. Probabilities were derived from logistic regression

models. Akaike Information Criteria (AIC): (1) linear function:

2060.63; (2) Median split: 2070.5; (3) Quintiles split: 1974.10; (4)

Deciles split: 1951.56. b Using different approaches to model age

effects on ‘‘not having enough to eat’’ during childhood, Study of

Health in Pomerania, West Pomerania, 2007–2010. Probabilities were

derived from logistic regression models. Calculations for the

fractional polynomials (FPs) were first performed with the STATA

fracpoly command. The selection of fractional polynomials was based

on the maximum deviance difference compared to the fit of a straight

line. The powers were selected from the default setting (-2, -1,

-0.5, 0, 0.5, 1, 2, 3), resulting in: first degree: 0.5; second degree: 3,3;

third degree: 3,3,3. When selecting fractional polynomials based on

the implemented closed test procedure in the STATA mfp command

(Royston and Sauerbrei 2008; Sauerbrei et al. 2006) with a set to 0.1

for the selection of powers, the same powers emerged as described

before. Akaike Information Criteria (AIC): (1) Quadratic transforma-

tion: 2079.74; (2) first degree FP: 2054.54; (3) second degree FP:

2015.20; (4) third degree FP: 1961.47
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nonlinear modelling approaches that are particularly suit-

able to capture local properties of the data.
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