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Introduction

Randomized placebo-controlled trials (RCTs) are consid-
ered the gold standard for assessing the effect of exposures
(e.g., treatments) or interventions (e.g., policies) on a
variety of outcomes. By design, randomization “controls”
for confounders to yield internally valid inference. How-
ever due to high costs, feasibility issues and/or ethical
considerations, the RCT study design may be unable to
answer pertinent public health-related research questions
(West et al. 2008). Such questions include real-world
effectiveness of newly marketed medications or the eval-
uation of health policies. Observational studies can bridge
knowledge gaps left by RCTs. The following article will
explain how to extend a pre—post study design using a
segmented generalized mixed model to evaluate the impact
of acute individual-level exposures on health outcomes.
We describe the advantages of using repeated measures
over traditional pre—post designs, what exposures are
appropriate to analyze, and how different impact models
can be parameterized. Like all methods, this approach
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comes with strengths, assumptions and limitations, which
we discuss.

Pre-post design

A simple pre—post study design compares outcomes at two
periods in time: before and after the exposure. To under-
stand how this design can measure the impact of an
exposure, we introduce the notion of counterfactual or
potential outcomes (Rubin 2005). We would like to com-
pare outcomes in the same people simultaneously: had they
been exposed and had they not. This would eliminate any
factors that confound the relation between exposure and
outcome, but of course this is not possible. Instead, we seek
an analytic design that mimics a scenario where we can
observe what would have happened in the absence of an
exposure. When repeated measures are available for the
same individual, and the only factor that changes over time
is the exposure, then the pre-exposure observations can act
as the counterfactual for the post-exposure outcomes. By
design, since the same individual is observed before and
after exposure, they act as their own control, meaning time-
invariant confounders, both known (i.e., seX, ethnicity,
socioeconomic status) and unknown/unmeasured (i.e.,
genetics, motivation, determination), are accounted for. A
regression-based approach extends the simple pre—post
design to model trends in outcomes as a function of time
(or slopes); see Fig. 1. The difference between the esti-
mated model for post-treatment slope based on the
observed or “factual” data, and the counterfactual slope
(extension of the pre-treatment slope) plus any immediate
level change is attributed to the effect of the exposure.

Exposure and time
The pre—post study design combined with a segmented
regression model requires systematic longitudinal data with

precise dates of the exposure and outcomes. Since the main
assumption is that nothing other than the exposure is
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Fig. 1 Pre—post design. Vertical dashed line illustrates the time at
which exposure occurred. Gray line illustrates the pre-exposure slope
or trends in outcomes. The gray dashed line is the counterfactual
extension of the pre-exposure trends to which the solid black line (the
actual post-exposure trends) is compared. The difference between the
two slopes (counterfactual and actual post-exposure) and the level
shift at the intervention point combine to form the impact of outcome
attributed to the exposure

changing over time, the exposure must be acute (abrupt or
a shock) and uncorrelated with other covariates. Calendar
time can be used as the time axis when an exposure impacts
a population at a specific period in time, such as a policy
change, and many published examples exist (Bernal et al.
2017; Dayer et al. 2015; Dennis et al. 2013; Jandoc et al.
2015; Kittel 2018; Lau et al. 2015; Lavergne et al. 2018;
Penfold and Zhang 2013; Wagner et al. 2002). Alterna-
tively, and less common in the literature, is when time is
centered for a given individual or cluster at a specific event,
also known as a multiple-baseline time series (Biglan et al.
2000; Fell et al. 2014). Examples include critical biological
periods (e.g., puberty, menopause) (Naumova et al. 2001),
acute physiological changes such as surgical transplants or
viral clearance via curative treatments (the example we
will use to illustrate this design).

Fig. 2 Segmented regression
impact models. a Slope change;
b level and slope change; ¢ level
change; d temporary slope
change leading to a level
change; e slope change
following a lag; f temporary
level change (Figure adapted
from Bernal et al. 2017)
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Segmented regression impact model

The impact of the exposure on the outcome can be modeled
in multiple ways. Figure 2 illustrates impact models (or
expected outcomes) which may include: immediate chan-
ges, denoted as a jump or break between pre/post exposure
(Fig. 2b, c, f) and/or a more gradual change over time
(slope change) (Fig. 2a, b, d, e). The effect can also be
modeled as a temporary (Fig. 2f) or a delayed (Fig. 2e)
effect. The impact model should be determined a priori
based on expert knowledge. A segmented model may also
be called a piecewise or broken-stick model; when evalu-
ating population-level exposures with panel data, the pre—
post design combined with segmented regression is known
as an interrupted time series design (Bernal et al. 2017,
Wagner et al. 2002).

Statistical considerations

Generalized mixed models can be used in combination
with a segmented design (French and Heagerty 2008).
Clusters may refer to repeated measures of individual
people or hierarchical groupings such as by jurisdictions,
hospitals, or physicians. The use of random effects reflects
natural heterogeneity across clusters, allowing for cluster-
specific intercepts to be estimated efficiently by assuming
that they arise from a normal distribution (Laird and Ware
1982), and by borrowing strength from those subjects with
many data points to learn about individuals with fewer
measurements. Fixed effects models are an alternative
approach and require less stringent assumptions to produce
consistent estimates (Strumpf et al. 2017), but are not
statistically efficient since they require estimating separate
parameters for each cluster. When models are linear,

(b)

—_
(2)
~

QE) g

5| — S| —

o | o
Time Time

(e) ()

o e

o} o

O O |
Time Time



Segmented generalized mixed effect models to

evaluate health outcomes 549

Fig. 3 Visualization of
segmented regression

coefficients

Table 1 Results from a
generalized linear mixed
regression model of the impact

Pre-Exposure Post-Exposure

B, estimates the change (slope or trend)

/ } Bs in the mean outcome as a function of
B, {F=---——""" time before the exposure

Outcome

B, estimates the level change in the
mean outcome immediately after the

exposure

B, estimates the change (slope or trend)
in the mean outcome after the exposure

Time (years)

(VAS units, 95% CI)

of DAAs on HR-QoL

Baseline HR-QoL

Bo 68.7 (66.8, 70.6)

Pre-treatment HR-QoL trends (change HR-QoL/year) B1 0.1 (—0.3,04)
Immediate or level change of HR-QoL B> 2.3 (0.0, 4.7)
Impact of DAAs on HR-QoL post-treatment (change HR-QoL/year) B3 04 (- 1.9, 2.6)

Table 2 Limitations and solutions

Potential
limitations

Explanation or practical example

Solutions/sensitively analyses

Presence of a
lead-time effect

Biased
counterfactual

Presence of time-
varying
confounding

Exposure has a
non-linear effect

Since the exposure is not randomly assigned, it is possible that This can be assessed by evaluating whether changes
outcomes may change in anticipation of the exposure in the trend had already started to occur during the

pre-exposure period.

Sensitivity analysis Change the time axis to begin at
some fixed interval prior to the exposure. This
would provide a pre-treatment slope excluding
any artificial changes attributable to the exposure

The impact of the exposure is dependent on the pre-exposure trends Pre-exposure trends need to be assessed by subject
estimating an unbiased counterfactual of post-exposure trends matter knowledge.

Sensitivity analysis If there are concerns that
outcomes may be changing over time, an external
control group (a group of people not exposed) can
be used to evaluate trends over time; this is known
as a “difference-in-difference” approach (Strumpf

et al. 2017)

Although time-invariant confounders are accounted for by design If time-varying confounders are measured, these
when using repeated measures, time-varying confounders are not. can be included into the regression model,
These include factors that change over time associated with the provided these variables themselves are not
exposure and outcome and not captured by the pre-exposure trend  affected by the change in exposure

The model equation described in this paper assumes a linear Visually examining the data is a first step to
relationship of the outcome and time. However, this relationship evaluate non-linearity. Flexible modeling of time

may in fact be non-linear

can be a solution.

Sensitivity analysis A squared or cubic form of time
can be included in the model. The use of splines
or other more flexible modeling may also be
explored if data permits; however, model
interpretation becomes more difficult

estimates from fixed versus mixed models are very similar. The basic segmented regression model (consistent with
However, the interpretations from each model, especially  Fig. 2a—c) that allows for immediate (level) and gradual
when models are non-linear, and the properties of the  (slope) changes has three model parameters relating to (1)
estimators—most notably power—differ.

time;;, where each individual i has j observations; (2) pre—
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post;;, an indicator variable to divide observations before
and after exposure; (3) interaction term (time; X pre—
post;) to allow for the post-exposure slope to change.
Additional variables may be incorporated, letting X;; denote
a vector of confounders. Figure 3 illustrates the following
model:

E[Y;] = (By + bi) + By time;; + f, pre — post;;
+ B time;; X pre — post; + B4 X;;

Additional parameters are needed to capture relation-
ships like those shown in Fig. 2d—f.

Example Hepatitis C virus (HCV) is the first chronic viral
infection that can be cured using direct acting antivirals
(DAAs), in as little as 12 weeks. Although efficacious, it
remains unknown what impact HCV cure will have on other
health outcomes such as health-related quality of life (HR-
QoL). Data were provided from a large prospective cohort of
HIV-HCV co-infected individuals with repeated HR-QoL
measures before and after treatment (Klein et al. 2010). Par-
ticipants self-reported current health from 0 to 100 (worst to best
health) using the visual analog scale (VAS) of the EQ-5D-3L.
A priori, we assume the exposure/outcome relationship would
resemble Fig. 3. Stata code is provided (appendix 1). Between
2014 and 2016, 231 individuals (i) initiated DAA (exposure at
time zero). A total of 1765 observations (j) ; mean follow-up
of 3.4 (SD 2.7) years, were collected before treatment (pre-
exposure) and 523 observations (j); mean follow-up of 0.7 (SD
0.6) years were collected after treatment completion (post-ex-
posure). The results are summarized in Table 1. Using a real-
world population, we found evidence of an immediate
improvement in HR-QoL following treatment: 2.3 units (95%
CIL, 0.0, 4.7). Following the end of treatment, HR-QoL contin-
ued to increase by 0.4 units/year (95% CI, — 1.9, 2.6), con-
trolling for the immediate change and the pre-treatment trends.

Segmented regression assumes that any change in the
outcome stems only from the exposure, and that the model
correctly specifies the dependence of the outcome on time,
exposure, and other variables. Table 2 summarizes the
possible violations of these assumptions and solutions.

In this paper, we have demonstrated how a segmented
generalized mixed model can be used to investigate the
impact of acute individual-level exposures on health out-
comes. We illustrated this method using a real-world
example of the impact of a curative HCV treatment on HR-
QoL. The approach can easily be applied with any standard
statistical software. The major strength of this approach is
that, by having repeated measures on the same individual
before and after an exposure, by design both known and
unknown time-invariant confounders are controlled. How-
ever, time-varying confounders and the possibility of lead-
time effects may bias results. Therefore, caution should be
exercised before interpreting the results causally.
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