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Introduction

Randomized placebo-controlled trials (RCTs) are consid-

ered the gold standard for assessing the effect of exposures

(e.g., treatments) or interventions (e.g., policies) on a

variety of outcomes. By design, randomization ‘‘controls’’

for confounders to yield internally valid inference. How-

ever due to high costs, feasibility issues and/or ethical

considerations, the RCT study design may be unable to

answer pertinent public health-related research questions

(West et al. 2008). Such questions include real-world

effectiveness of newly marketed medications or the eval-

uation of health policies. Observational studies can bridge

knowledge gaps left by RCTs. The following article will

explain how to extend a pre–post study design using a

segmented generalized mixed model to evaluate the impact

of acute individual-level exposures on health outcomes.

We describe the advantages of using repeated measures

over traditional pre–post designs, what exposures are

appropriate to analyze, and how different impact models

can be parameterized. Like all methods, this approach

comes with strengths, assumptions and limitations, which

we discuss.

Pre–post design

A simple pre–post study design compares outcomes at two

periods in time: before and after the exposure. To under-

stand how this design can measure the impact of an

exposure, we introduce the notion of counterfactual or

potential outcomes (Rubin 2005). We would like to com-

pare outcomes in the same people simultaneously: had they

been exposed and had they not. This would eliminate any

factors that confound the relation between exposure and

outcome, but of course this is not possible. Instead, we seek

an analytic design that mimics a scenario where we can

observe what would have happened in the absence of an

exposure. When repeated measures are available for the

same individual, and the only factor that changes over time

is the exposure, then the pre-exposure observations can act

as the counterfactual for the post-exposure outcomes. By

design, since the same individual is observed before and

after exposure, they act as their own control, meaning time-

invariant confounders, both known (i.e., sex, ethnicity,

socioeconomic status) and unknown/unmeasured (i.e.,

genetics, motivation, determination), are accounted for. A

regression-based approach extends the simple pre–post

design to model trends in outcomes as a function of time

(or slopes); see Fig. 1. The difference between the esti-

mated model for post-treatment slope based on the

observed or ‘‘factual’’ data, and the counterfactual slope

(extension of the pre-treatment slope) plus any immediate

level change is attributed to the effect of the exposure.

Exposure and time

The pre–post study design combined with a segmented

regression model requires systematic longitudinal data with

precise dates of the exposure and outcomes. Since the main

assumption is that nothing other than the exposure is
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changing over time, the exposure must be acute (abrupt or

a shock) and uncorrelated with other covariates. Calendar

time can be used as the time axis when an exposure impacts

a population at a specific period in time, such as a policy

change, and many published examples exist (Bernal et al.

2017; Dayer et al. 2015; Dennis et al. 2013; Jandoc et al.

2015; Kittel 2018; Lau et al. 2015; Lavergne et al. 2018;

Penfold and Zhang 2013; Wagner et al. 2002). Alterna-

tively, and less common in the literature, is when time is

centered for a given individual or cluster at a specific event,

also known as a multiple-baseline time series (Biglan et al.

2000; Fell et al. 2014). Examples include critical biological

periods (e.g., puberty, menopause) (Naumova et al. 2001),

acute physiological changes such as surgical transplants or

viral clearance via curative treatments (the example we

will use to illustrate this design).

Segmented regression impact model

The impact of the exposure on the outcome can be modeled

in multiple ways. Figure 2 illustrates impact models (or

expected outcomes) which may include: immediate chan-

ges, denoted as a jump or break between pre/post exposure

(Fig. 2b, c, f) and/or a more gradual change over time

(slope change) (Fig. 2a, b, d, e). The effect can also be

modeled as a temporary (Fig. 2f) or a delayed (Fig. 2e)

effect. The impact model should be determined a priori

based on expert knowledge. A segmented model may also

be called a piecewise or broken-stick model; when evalu-

ating population-level exposures with panel data, the pre–

post design combined with segmented regression is known

as an interrupted time series design (Bernal et al. 2017;

Wagner et al. 2002).

Statistical considerations

Generalized mixed models can be used in combination

with a segmented design (French and Heagerty 2008).

Clusters may refer to repeated measures of individual

people or hierarchical groupings such as by jurisdictions,

hospitals, or physicians. The use of random effects reflects

natural heterogeneity across clusters, allowing for cluster-

specific intercepts to be estimated efficiently by assuming

that they arise from a normal distribution (Laird and Ware

1982), and by borrowing strength from those subjects with

many data points to learn about individuals with fewer

measurements. Fixed effects models are an alternative

approach and require less stringent assumptions to produce

consistent estimates (Strumpf et al. 2017), but are not

statistically efficient since they require estimating separate

parameters for each cluster. When models are linear,

Fig. 1 Pre–post design. Vertical dashed line illustrates the time at

which exposure occurred. Gray line illustrates the pre-exposure slope

or trends in outcomes. The gray dashed line is the counterfactual

extension of the pre-exposure trends to which the solid black line (the

actual post-exposure trends) is compared. The difference between the

two slopes (counterfactual and actual post-exposure) and the level

shift at the intervention point combine to form the impact of outcome

attributed to the exposure

Fig. 2 Segmented regression

impact models. a Slope change;

b level and slope change; c level

change; d temporary slope

change leading to a level

change; e slope change

following a lag; f temporary

level change (Figure adapted

from Bernal et al. 2017)
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estimates from fixed versus mixed models are very similar.

However, the interpretations from each model, especially

when models are non-linear, and the properties of the

estimators—most notably power—differ.

The basic segmented regression model (consistent with

Fig. 2a–c) that allows for immediate (level) and gradual

(slope) changes has three model parameters relating to (1)

timeij, where each individual i has j observations; (2) pre–

Fig. 3 Visualization of

segmented regression

coefficients

Table 1 Results from a

generalized linear mixed

regression model of the impact

of DAAs on HR-QoL

(VAS units, 95% CI)

Baseline HR-QoL b0 68.7 (66.8, 70.6)

Pre-treatment HR-QoL trends (change HR-QoL/year) b1 0.1 (- 0.3, 0.4)

Immediate or level change of HR-QoL b2 2.3 (0.0, 4.7)

Impact of DAAs on HR-QoL post-treatment (change HR-QoL/year) b3 0.4 (- 1.9, 2.6)

Table 2 Limitations and solutions

Potential

limitations

Explanation or practical example Solutions/sensitively analyses

Presence of a

lead-time effect

Since the exposure is not randomly assigned, it is possible that

outcomes may change in anticipation of the exposure

This can be assessed by evaluating whether changes

in the trend had already started to occur during the

pre-exposure period.

Sensitivity analysis Change the time axis to begin at

some fixed interval prior to the exposure. This

would provide a pre-treatment slope excluding

any artificial changes attributable to the exposure

Biased

counterfactual

The impact of the exposure is dependent on the pre-exposure trends

estimating an unbiased counterfactual of post-exposure trends

Pre-exposure trends need to be assessed by subject

matter knowledge.

Sensitivity analysis If there are concerns that

outcomes may be changing over time, an external

control group (a group of people not exposed) can

be used to evaluate trends over time; this is known

as a ‘‘difference-in-difference’’ approach (Strumpf

et al. 2017)

Presence of time-

varying

confounding

Although time-invariant confounders are accounted for by design

when using repeated measures, time-varying confounders are not.

These include factors that change over time associated with the

exposure and outcome and not captured by the pre-exposure trend

If time-varying confounders are measured, these

can be included into the regression model,

provided these variables themselves are not

affected by the change in exposure

Exposure has a

non-linear effect

The model equation described in this paper assumes a linear

relationship of the outcome and time. However, this relationship

may in fact be non-linear

Visually examining the data is a first step to

evaluate non-linearity. Flexible modeling of time

can be a solution.

Sensitivity analysis A squared or cubic form of time

can be included in the model. The use of splines

or other more flexible modeling may also be

explored if data permits; however, model

interpretation becomes more difficult
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postij, an indicator variable to divide observations before

and after exposure; (3) interaction term (timeij 9 pre–

postij) to allow for the post-exposure slope to change.

Additional variables may be incorporated, letting Xij denote

a vector of confounders. Figure 3 illustrates the following

model:

E Yij
� �

¼ ðb0 þ biÞ þ b1 timeij þ b2 pre � postij
þ b3 timeij � pre � postij þ b4 Xij

Additional parameters are needed to capture relation-

ships like those shown in Fig. 2d–f.

Example Hepatitis C virus (HCV) is the first chronic viral

infection that can be cured using direct acting antivirals

(DAAs), in as little as 12 weeks. Although efficacious, it

remains unknown what impact HCV cure will have on other

health outcomes such as health-related quality of life (HR-

QoL). Data were provided from a large prospective cohort of

HIV–HCV co-infected individuals with repeated HR-QoL

measures before and after treatment (Klein et al. 2010). Par-

ticipants self-reported current health from 0 to 100 (worst to best

health) using the visual analog scale (VAS) of the EQ-5D-3L.

A priori, we assume the exposure/outcome relationship would

resemble Fig. 3. Stata code is provided (appendix 1). Between

2014 and 2016, 231 individuals (i) initiated DAA (exposure at

time zero). A total of 1765 observations (j) ; mean follow-up

of 3.4 (SD 2.7) years, were collected before treatment (pre-

exposure) and 523 observations (j); mean follow-up of 0.7 (SD

0.6) years were collected after treatment completion (post-ex-

posure). The results are summarized in Table 1. Using a real-

world population, we found evidence of an immediate

improvement in HR-QoL following treatment: 2.3 units (95%

CI, 0.0, 4.7). Following the end of treatment, HR-QoL contin-

ued to increase by 0.4 units/year (95% CI, - 1.9, 2.6), con-

trolling for the immediate change and the pre-treatment trends.

Segmented regression assumes that any change in the

outcome stems only from the exposure, and that the model

correctly specifies the dependence of the outcome on time,

exposure, and other variables. Table 2 summarizes the

possible violations of these assumptions and solutions.

In this paper, we have demonstrated how a segmented

generalized mixed model can be used to investigate the

impact of acute individual-level exposures on health out-

comes. We illustrated this method using a real-world

example of the impact of a curative HCV treatment on HR-

QoL. The approach can easily be applied with any standard

statistical software. The major strength of this approach is

that, by having repeated measures on the same individual

before and after an exposure, by design both known and

unknown time-invariant confounders are controlled. How-

ever, time-varying confounders and the possibility of lead-

time effects may bias results. Therefore, caution should be

exercised before interpreting the results causally.
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