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The traditional approach to modeling the determinants of an outcome of interest in epidemiology
consists of employing statistical methodologies, typically regression-based analyses. An
alternative, which is becoming increasingly appreciated in the field, is offered by machine
learning (ML), i.e., algorithmic based strategies which take advantage of the increased
computational power over the past decade. In supervised ML, a training dataset is used to
learn a predictive model for a target (the ML term for the outcome, i.e., the dependent variable)
from specified features (the ML term for the explanatory, i.e., the independent, variables). The
predictive performance of the resulting model is then assessed on a hold-out testing dataset. One of
the main appeals of ML is that it offers more flexibility in terms of the assumptions about the
variables and their relationships.

ML approaches yielded improved Risk of Sepsis scores [1] and models for groundwater nitrate
exposure [2], to cite a few examples. However, setting up a suitable ML pipeline for a specific task
involves several steps and decisions, including data pre-processing, feature selection, feature
engineering, selection of ML algorithm(s), and tuning of the algorithm hyperparameters [3].
Optimizing ML-based pipelines with respect to predictive performance is therefore labor intensive
and requires considerable domain expertize. An exciting development in the field consists of
methods which assist (potentially non-expert) users in the design and optimization of ML
pipelines. These methods are termed automated machine learning (AutoML) [4]. The Tree-
based Pipeline Optimization Tool (TPOT) [5, 6] is an AutoML which employs genetic
programming [7] to explore pipelines consisting of combinations of feature selection, feature
transformation, and classification or regression steps and recommends the pipeline with the best
performance. Good practice is to then assess the predictive performance of this pipeline on a
separate hold-out testing dataset. TPOT offers a choice of several metrics to assess pipeline
performance. In the application illustrated below we chose accuracy, the proportion of correctly
classified individuals.

TPOT has been successfully used in biomedical applications including genetics [5],
metabolomics [8, 9], transcriptomics [10, 11], and toxicogenomics [10]. Here we describe
an application to infectious disease epidemiology leveraging data from ClinEpiDB, a resource
aimed at advancing global public health by facilitating the exploration and analysis of
epidemiological studies [12]. We selected the India International Centers of Excellence in
Malaria Research (ICEMR) cross-sectional study of malaria in different transmission settings
[13]. In the traditional regression-based analyses on this dataset reported in [14], the
independent variables were age bin (<5, 5–14, 15+), gender, a history of travel in the two
weeks preceding the survey visit, a history of malaria in the past year, antimalarial use in the two
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weeks preceding the visit, reported use of repellent, and
whether the visit occurred during the rainy season. There
were five outcomes of interest (malaria detected by PCR, or by

microscopy, submicroscopic/symptomatic/asymptomatic malaria)
and analyses were stratified by site in India (Chennai/Nadiad,/
Rourkela) and by Plasmodium species (falciparum/vivax/any), for a
total of 45 analyses. We analyzed the same stratified combinations
of targets and features using TPOT. As an illustration, we describe
our TPOT results for one of these combinations, namely the
analysis on individuals from Nadiad where the (binary) target is
whether the individual had malaria (any species) detected by
microscopy (58 cases, 793 controls). None of the features listed
above was identified as significantly associated to the outcome in the
regression analyses reported in [14]. We used TPOT to explore
three increasingly complex types of pipelines: i) a single regularized
logistic regression (LR) step, or ii) a combination of feature
selection, feature transformation, and LR steps, or iii) a
combination of feature selection, feature transformation and
classification steps. For each of these three types, we ran TPOT
50 times with different random splits of the input data into training
(75%) and hold-out testing (25%) portions. Moreover, to mitigate
the effect of the high imbalance between number of cases and
controls, in each run we randomly undersampled the controls to
equal the number of cases prior to the random split. Figure 1
summarizes the results, where each point represents one of the 50
runs of TPOT exploring pipelines of the type indicated by its color.
On the y-axis the accuracy on the testing set of the TPOT-optimized
pipeline for that run is indicated. The Kruskal-Wallis test did not
detect a significant difference in the three distributions. For this
dataset, simple pipelines of type (i) achieve good microscopic
malaria prediction accuracy on average (mean � 0.68), when the
regularized LR hyperparameters are tuned. Models of type (i)
generalize those used in [14], and are easily interpretable. The
best accuracy across these 50 TPOT runs is 0.86. On the other hand,
the best accuracies across type (ii) and (iii) runs are ∼90%. There is a
tradeoff between interpretability and complexity. Figure 2 depicts
the architecture of the best pipeline of type (iii). This has a higher
accuracy than the best LR pipeline but is quite complex and it

FIGURE 1 | Results of 50 TPOT runs for each of model types (i) a single
regularized logistic regression step, (ii) a combination of feature selection,
feature transformation, and regularized logistic regression steps, and (iii) a
combination of feature selection, feature transformation and
classification steps. Each point corresponds to a run and its y-coordinate
indicates the accuracy of the pipeline optimized in that run over the hold-out
testing dataset. Data are from the ICEMR cross-sectional study of malaria,
India, 2012–2014.

FIGURE 2 | Workflow of feature selection, feature transformation and classification steps for the pipeline of type (iii) with the best accuracy. Arrows indicate step
outputs which are fed as inputs of subsequent steps. When exploring pipeline space, currently the Tree-based Pipeline Optimization Tool can choose among five feature
selection, 14 feature transformation and 15 classification algorithms. The node labels in this graph indicate the algorithms selected in this pipeline. Nystroem is a feature
transformation algorithm; Extra Trees, Decision Tree and Random Forest are classifiers. The Stacking Estimator adds to its input features the results of applying the
indicated classifier to those features. The Tree-based Pipeline Optimization Tool tuned hyperparameter values for each step are not shown for visual simplicity. Data are
from the ICEMR cross-sectional study of malaria, India, 2012–2014.
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would have unlikely been discovered without an AutoML
approach. The most relevant features in this pipeline, in terms
of driving the predictive model, were gender and antimalarial use,
based on permutation importance, which is a standard ML
method to aid in model interpretability, described at https://
eli5.readthedocs.io/en/latest/blackbox/permutation_importance.
html#eli5-permutation-importance.

This example underscores the utility of AutoML approaches
in epidemiology, especially those offering to non-expert users
the ability to specify the type of pipelines to explore, from very
simple to very complex, at the same time leaving the heavy
lifting to the AutoML. We add that the most recent extension of
TPOT enables covariate adjustments [10] which in some
epidemiology settings is crucial. Embedding AutoML tools
within epidemiology platforms like ClinEpiDB would
empower users to directly perform sophisticated analyses,
accelerating the benefits derived from these public health
resources.
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