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Objectives: We report results of a systematic review on the health effects of long-term
traffic-related air pollution (TRAP) and diabetes in the adult population.

Methods: An expert Panel appointed by the Health Effects Institute conducted this
systematic review. We searched the PubMed and LUDOK databases for epidemiological
studies from 1980 to July 2019. TRAP was defined based on a comprehensive protocol.
Random-effects meta-analyses were performed. Confidence assessments were based on
a modified Office for Health Assessment and Translation (OHAT) approach,
complemented with a broader narrative synthesis. We extended our interpretation to
include evidence published up to May 2022.

Results: We considered 21 studies on diabetes. All meta-analytic estimates indicated
higher diabetes risks with higher exposure. Exposure to NO2 was associated with higher
diabetes prevalence (RR 1.09; 95% CI: 1.02; 1.17 per 10 μg/m3), but less pronounced for
diabetes incidence (RR 1.04; 95% CI: 0.96; 1.13 per 10 μg/m3). The overall confidence in
the evidence was rated moderate, strengthened by the addition of 5 recently published
studies.

Conclusion: There was moderate evidence for an association of long-term TRAP
exposure with diabetes.
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INTRODUCTION

Diabetes is a major metabolic disease characterized by persistent
hyperglycemia if untreated [1]. According to the International
Diabetes Federation (IDF), 537 million adults are living with
diabetes worldwide with an estimated 45% who are undiagnosed.
By 2045, 783 million adults are projected to have diabetes. The
most common form of diabetes, type 2, accounts for
approximately 90% of cases. Type 2 diabetes is characterized
by insulin resistance, a diminished response to insulin of cells in
the muscles, liver and fat [2]. Apart from genetic factors that
contribute to diabetes risk, the most familiar risk factors include
behaviors such as lack of physical activity and diet.
Environmental exposures, such as air pollution are also
expected to play a role [3].

In 2019, 19.9% of diabetes-related deaths and 19.6% of the
diabetes-related disability-adjusted life-years (DALY) were
attributed to particulate air pollution [4]. Several systematic
reviews have concluded that ambient air pollution is
associated with diabetes mellitus [5, 6], diabetes type 1 [7] or
gestational diabetes mellitus [8]. Understanding how diabetes risk
is affected by air pollution from specific sources informs useful air
quality policies and other interventions. Automotive vehicular
traffic is a prevalent source of air pollution, especially in cities. In
animal studies, traffic-related air pollution (TRAP) was shown to
elicit oxidative stress and subclinical inflammation, resulting in
impaired insulin signaling and insulin resistance [9]. The sole
systematic review to date evaluating the association of TRAP
exposure with diabetes concluded there was a positive association
between the two [10]. TRAP is a complex mixture and includes
tailpipe and non-tailpipe emissions. Tailpipe emissions, from
combustion of fossil fuels, contain particulate matter (PM),
particularly as elemental carbon (EC) or soot, and nitrogen
oxides. Non-tailpipe emissions originate from brake, tire, and
road surface abrasion, and re-suspension of dust [11] and include
PM trace metals such as copper (Cu), iron (Fe) and zinc (Zn). In
high-income countries, non-tailpipe emissions comprise over
half of the PM from traffic [12].

The Health Effects Institute (HEI) appointed an expert Panel
to systematically evaluate the epidemiological evidence on the
associations between TRAP and selected health outcomes
including mortality, respiratory diseases, birth outcomes, and
cardiometabolic health effects including diabetes. The resulting
HEI Special Report was published in 2022 [13], along with a short
communication paper of the main findings [14].

Here, we elaborate in depth on the findings and confidence
assessment on TRAP in relation to effects on diabetes in adults,
and in supplemental analyses we extend our interpretation to
include evidence published after completion of the original
literature search.

METHODS

The 2022 review was led by an expert Panel of 13 experts in
environmental sciences, epidemiology, exposure assessment and
statistics, supported by an external team and HEI staff. We used a

systematic approach to search and select the literature for
inclusion in the review, assess study quality, summarize
results, and assess the confidence in the association between
TRAP and diabetes. The methods were based on standards set
by Cochrane Collaboration [15], the World Health Organization
[16], and the National Institute of Environmental Health Sciences
Office of Health Assessment and Translation (NIEHS OHAT)
[17] and are described in more detail in the special report [13].
The protocol was published [18] and registered in PROSPERO
2019 CRD42019150642 available from: https://www.crd.york.ac.
uk/prospero/display_record.php?ID=CRD42019150642.

Exposure Framework for TRAP
Pollutants emitted by motorized traffic are also emitted by other
(combustion) sources. A novel framework to formalize the
process of determining whether the air pollution exposure
contrast in a study was dominated by traffic, we developed a
novel framework [18]. In brief, the framework combined three
aspects of TRAP assessment and results from a study had to
entail all three aspects to be included: 1) Included studies used
measures of defined traffic-related pollutants and/or indirect
traffic measures, such as distance to major roads or traffic
density. Eligible pollutants were NO2, NOx, NO, carbon
monoxide (CO), EC (including related metrics such as black
carbon, black smoke, and PM absorbance), ultrafine particles
(UFP), non-tailpipe PM trace metals [e.g., copper (Cu), iron
(Fe) and Zinc (Zn)], polycyclic aromatic hydrocarbons (PAHs),
benzene, PM10, PM2.5 and PMcoarse (Supplementary Table S1).
2) Both the pollution surface and participants’ addresses in the
included studies had to meet the framework’s thresholds for
spatial resolution (e.g., 5 km grid). 3) Eligible exposure
assessment methods included appropriate models or surface
monitoring at sufficient spatial resolutions (Supplementary
Table S2).

Following this framework, we excluded studies on short-term
(minutes to months) effects or self-reported exposures to TRAP.
We included studies that assigned individual-level exposure
based on models exploiting within-city (i.e., neighborhood)
contrasts, that were considered to stem primarily from traffic.
Studies that exclusively used between-city contrasts were
excluded. In general, the larger the study area, the less likely a
measured or modelled contrast in pollution stems primarily from
traffic emissions. Therefore, epidemiological studies in larger
regions (e.g., state- or country-wide studies) were only
included when they adjusted for area in their analysis. PM is
generally not specific to traffic. We included results pertaining to
PMmeasures (aerodynamic diameter ≤10 μm [PM10] or ≤2.5 μm
[PM2.5]) in certain settings, e.g., urban areas, so long as they met
more stringent requirements for inclusion. For example, PM
studies based exclusively on surface monitoring were excluded,
but studies using chemical transport models, dispersion models
or land-use regression models with a resolution finer or equal to
5 km were included.

To specify how well the studies met the multiple criteria of the
exposure framework, we defined an indicator for high traffic
specificity based on even stricter criteria. We used this indicator
for sensitivity analyses. High traffic specificity was mainly
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assigned to models with finer resolution (<1 km) or PM models
considering only traffic-specific sources/emissions also with a
resolution <1 km.

We converted effect estimates for pollutants expressed as ppb
or ppm to μg/m³, or mg/m³ using standard WHO scaling factors
(standardization of units). For example, 1 ppb NO2 = 1.88 μg/m³,
assuming an ambient pressure of 1 atm and a temperature of 25°C
[19]. Effect estimates for black carbon (BC), black smoke (BS) and
PM2.5 absorption (soot) were converted into EC-equivalent
estimates [20, 21].

Search Strategy
We performed a systematic literature search in PubMed and the
specialized LUDOK (Literature database and services on Health
Effects of Ambient Air Pollution https://www.swisstph.ch/en/
projects/ludok/datenbanksuche/) database matching the
PECOS (Population, Exposure, Comparator, Outcome and
Study) question [15] for epidemiologic studies:

“In the adult population (P), what is the increase in risk of
prevalence and incidence of diabetes (O) per unit increase (C) of
long-term exposure to traffic-related air pollution (E), observed in
studies relevant for the health outcome and exposure duration of
interest (S).”

We searched the databases from 1 January 1980 through
31 July 2019. This end date was chosen a priori for the
comprehensive HEI special report comprising dozens of
exposures and health outcomes. The search strategy was
based on a review protocol developed by the NIEHS OHAT
(OHAT) and further refined using a combination of medical
subheadings (MeSH) and keywords (Supplementary Table
S3). The search strategy was supplemented with hand-searches
of references in recent reviews. These were identified by the
original search, an additional search in the LUDOK database
or individual bibliographic databases curated by HEI and
Panel members.

Eligibility Criteria
We applied the following inclusion and exclusion criteria
according to the predefined PECOS statement. Studies needed
to be published in English in a peer-reviewed journal.

Population
We included studies reporting on the general human adult
population, aged 18 and older, from all geographical areas
were included. We excluded studies reporting on occupational
exposure or exclusively indoor settings as they would be difficult
to compare with general population outdoor exposures.

Exposure
Studies that assessed long-term exposure (months to years) to
TRAP as defined in the exposure framework were included.

Comparator
Studies analyzing health effects of TRAP either on a continuous
scale or in exposure categories and reporting a quantitative
measure of association plus a measure of precision were included.

Outcome
Eligible studies evaluated the incidence or prevalence of diabetes,
and defined diabetes as fasting blood glucose levels above a
threshold, self-reported physician-diagnosed diabetes, clinical
diagnosis (ICD-9: 250, ICD-10: E10–E14) in medical records
or claims, or the use of blood glucose-lowering medication.

Study Design
We included original epidemiologic studies with individual level
data adopting a cohort, case–cohort, case–control, cross-
sectional, or intervention design.

We excluded studies that: analyzed only area-level data,
evaluated effects of short-term exposure (e.g., time-series or
case cross-over studies), reported only unadjusted results,
showed clear evidence of an analytical error, were strictly
methodological of focused on gene-environment interactions.

Study Selection
We used DistillerSR, a web–based, systematic review software
program version 2.29.8 [22], for screening, data extraction and
risk of bias assessment. Initial screening based on title and
abstract was done by two independent reviewers. Secondary
screenings of study eligibility, especially regarding the
exposure criterion, were conducted by two independent
reviewers based on the full-text, supplements and related
exposure assessment papers. At this full-text review stage, the
reviewers documented reasons for excluding any given study
(Supplementary Table S4). Any disagreement on inclusion was
resolved by discussion.

Risk of Bias
We assessed risk of bias (RoB) in the estimation of all
exposure–outcome associations that were included in the
meta-analyses. We used a modified version of the tool
developed for the risk of bias assessment in systematic reviews
for the WHO Air Quality Guidelines [16, 23]. In brief, the risk of
bias tool guides the assessment of each study’s potential for bias
from six domains and related subdomains of systematic error
sources: 1) confounding; 2) selection bias; 3) exposure
assessment; 4) outcome measurement; 5) missing data; and 6)
selective reporting. Most domains have subdomains. The risk of
bias for each subdomain and for each domain overall was given a
rating of low, moderate or high. No summary classification was
derived across the domains.

Meta-Analysis
We conducted meta-analysis for each exposure-outcome pair
where three or more studies reported results; we separately
analysed findings from incidence and prevalence studies. Effect
estimates from single-pollutant models were selected for the
meta-analysis. For presenting results on each pollutant, we
applied a uniform pollutant contrast to all contributing
estimates and the resulting meta-analytic summary estimate
(e.g., RR per 10 μg/m3 increment in NO2), which necessitated
converting some contributing estimates (see Supplementary Eq.
S1). We chose the contrast of a given pollutant to reflect a realistic
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range of exposures in most studies, by using the pollutant
concentration increments from a large European ESCAPE
study [24]. Meta-analysis was not conducted for the exposure
metrics related to distance and density of traffic, because the
varying definitions across the studies precluded such analyses.
We computed summary effect estimates with random effects
models, using restricted maximum likelihood to estimate the
between study variance [25]. Random effects models were chosen
a priori because of the expected differences in effect estimates
related to differences in populations and pollution mixtures.
Statistical heterogeneity was assessed using primarily I2, where
I2 values of <50% were interpreted as low; between 50% and 75%
as moderate; and >75% as high degree of heterogeneity [26]. The
risk estimates hazard ratio (HR), relative risk (RR), incidence rate
ratio (IRR) and odds ratio (OR) were considered to approximate
the risk ratio [27] and were therefore analysed together as done
previously [28]. We use the general term RR to indicate any of the
ratio measures.

If a sufficient number of studies were available, we performed
additional meta-analyses to assess consistency of the association
by: geographic regions; level of risk of bias (selection bias, missing
data, confounding, exposure assessment, outcome assessment);
smoking adjustment; traffic specificity; and adjustment for the co-
exposure noise. All analyses and plots were done with the
statistical program R (version 3.6.0), using the libraries
“metafor” (v.2.4-0), “meta,” (v. 4.16-2), “forestplot” (v.1.10.1),
“ggplot” (v. 3.3.3).

Assessment of the Evidence
We assessed: 1) the quality of the body of evidence using a modified
OHAT protocol [17], which itself is based on the GRADE (Grading
of Recommendations Assessment, Development and Evaluation)
approach; and 2) the confidence in an association between TRAP
and diabetes in a “narrative” assessment. These complementary
methods are described fully in the HEI Special Report, Additional
Materials 5.3 [13]. We also reflect on the confidence assessment in a
separate paper (under review).

For studies included in meta-analyses, we conducted the
quality assessments separately for each pollutant and study
design. Starting with a confidence rating depending on study
design (moderate for cohort studies and low for cross-sectional
studies), the rating was then downgraded for factors that decrease
confidence (high RoB, unexplained inconsistency, imprecision,
and publication bias) and upgraded for factors that increase
confidence in the body of evidence (monotonic exposure-
response, consistency across populations, and consideration of
residual confounding). We did not consider the downgrading
factor “indirectness” because we included only studies of human
exposure to TRAP in direct association with diabetes.
Furthermore, we did not use the upgrading factor “large
magnitude of effect,” because this factor was unlikely to be
meaningful. This a priori decision was based on experiences in
the WHO systematic reviews of air pollution, where large or very
large effect sizes (i.e., large RR > 2 or very large RR > 5 as defined
in OHAT) never occurred [30, 31]. Large RRs were also not
observed in our review (Supplementary Figure S1). Next,
evaluations per pollutant were combined across study designs,

and then across pollutants which was informed by the pollutant
with the highest rating.

Since the OHAT assessment is geared toward studies entering
a meta-analysis and focusses on the quality of the body of
evidence rather than the presence of an association, the Panel
also conducted a more inclusive “narrative” assessment. This
additionally considered, e.g., pollutants with less than
three studies reporting results or those studying indirect traffic
measures. While many of the same aspects relevant to evidence
synthesis were included in both assessments, there were some
subtle differences, most notably regarding the magnitude and
direction of the association, and the consistency across pollutants
and indirect traffic measures.

In both assessments we rated the level of confidence as high,
moderate, low or very low. The two approaches were considered
complementary and combined into an overall confidence assessment.

Updated Search and Supplemental
Analyses
To interpret results of our original review (indicated in tables and
figures as “Global 2022”) in light of evidence published after the
ending date of this review’s literature search, we repeated the search
for eligible studies, starting from June 2019 up to May 2022. Studies
identified in this new searchwere not incorporated into the risk of bias
and confidence assessment. However, we incorporated their findings
into supplemental meta-analyses to investigate the robustness of our
original meta-analytic results to the inclusion of recently published
evidence (indicated in tables and figures as “Global 2023”).

RESULTS

Study Selection
The search strategy for all health outcomes considered for the
comprehensive review yielded 13,660 unique articles. After initial
screening, exclusion of studies not meeting the inclusion criteria,
and restricting to articles on diabetes outcomes, we identified
45 studies, 21 of which entered this review after full-text
assessment (Table 1, Supplementary Figure S2: PRISMA flow
chart). Most studies were excluded, because the spatial scale of the
pollution surface or participants’ address did not meet the criteria
(Supplementary Table S4).

Study Description
All studies were published after 2010. Nine studies estimated the
association of TRAP with incidence of diabetes, 10 with diabetes
prevalence, and two with both incidence and prevalence (the
Rome Longitudinal [32] and the SAPALDIA study [33, 34]).
The majority of the studies were conducted in Europe (10) or
North America (8), followed by China (2) and Australia (1).
Three studies were exclusively of women (BWHS [35, 36],
SALIA [37], ALSWH [38]). NO2 or NOx were the most
commonly studied pollutants (17), 11 studies investigated at
least one particle metric, and seven included proximity metrics.
Exposure levels ranged from very low (e.g., Australia, Canada)
to high (e.g., Rome, Italy, China), with ranges in annual means
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TABLE 1 | Characteristics of the studies reporting on the association of traffic-related air pollution and diabetes incidence or prevalence (Global 2022).

References Study name Location Study
period

Study
design in
analysis

Sample
size N (%
women)

Age at
baseline

Ascertainment of
diabetes

Confounder
adjusted for

Results (estimatea, 95% CI, increment)

[45] DDCH Copenhagen and
Aarhus, Denmark

1993–2006 Cohort 51,818
(53%)

56 Disease register Age, sex, iSES,
smoking,
behaviorb, BMI

Incidence
NO2 1.04 (1.00, 1.08) per 4.9 μg/m3c

NOx 1.02 (1.00, 1.04) per 11.4 μg/m3c

Distance 1.07 (0.95, 1.21) <50 vs. >50 m
Density 1.02 (1.00, 1.04) per 1,200 vehicle-km/day

[40] ONPHEC Toronto, Canada 1996–2012 Cohort 1,056,012
(53%)

51 Administrative data
from hospital and
insurance registries

Age, sex, nSES,
comorbiditiesd

Incidence
NO2 1.06 (1.05, 1.07) per 4.0 ppbc

PNC 1.06 (1.05, 1.08) per 9948.4 particles/cm3

[41] British
Columbia
Diabetes
Cohort

Vancouver,
British Columbia,
Canada

1994–2002 Cohort 380,738
(54%)

58 Administrative data
from insurance
registry

Age, sex, nSES Incidence
NO2 1.00 (0.98, 1.02) per 8.4 μg/m3c

NO 1.04 (1.01, 1.05) per 13.13 μg/m3

PM2.5abs 1.03 (1.01, 1.04) per 0.9 1e-5/mc

PM2.5 1.03 (1.01, 1.05) per 1.6 μg/m3c

[35] BWHS Los Angeles,
California,
United States

1995–2005 Cohort 39,922
(100%)

39 Doctor-diagnosed Age, iSES, nSES,
smoking,
behavior, BMI,
familial diabetes

Incidence
NOx 1.25 (1.07, 1.46) per 12.4 ppbc

[36] BWHS United States 1995–2013 Cohort 430,032
(100%)

39 Doctor-diagnosed Age, iSES, nSES,
smoking,
behavior, BMI,
area,
questionnaire
cycle

Incidence
NO2 0.90 (0.82, 1.00) per 9.7 ppbc

[63] Hoorn Diabetes
Screening

West Friesland,
Netherlands

1998–2000 Cross
sectional

8018 (51%) Range:
50–75

Multimodale Age, sex, nSES,
(BMI)f

Prevalence
NO2 1.03 (0.82, 1.31) 14.2–15.2 vs. 8.8–14.2 μg/m3

NO2 1.25 (0.99, 1.56) 15.2–16.5 vs. 8.8–14.2 μg/m3

NO2 0.80 (0.63, 1.02) 16.5–26 vs. 8.8–14.2 μg/m3

Distance 0.88 (0.70, 1.13) 2–74 vs. 220–1,610 m
Distance: 1.17 (0.93, 1.48) 74–140 vs. 220–1,610 m
Distance: 1.12 (0.88, 1.42) 140–220 vs. 220–1,610 m
Density: 1.09 (0.85, 1.38) 882–2007 vs. 63–516 thousand
vehicles/day
Density: 1.13 (0.89, 1.44) 680–882 vs. 63–516 thousand
vehicles/day
Density: 1.25 (0.99, 1.59) 516–680 vs. 63–516 thousand
vehicles/day

[44] Plovdiv
Diabetes
Survey

Plovdiv, Bulgaria 2014–2014 Cross
sectional

513 (61%) 36 Doctor-diagnosed Age, sex, iSES,
smoking,
behavior, BMI,
familial diabetes,
noise

Prevalence
PM2.5 1.32 (0.28, 6.24) >25 vs. <25 μg/m3

PAH (BaP) 1.76 (0.52, 5.98) >6 vs. <6 ng/m3
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TABLE 1 | (Continued) Characteristics of the studies reporting on the association of traffic-related air pollution and diabetes incidence or prevalence (Global 2022).

References Study name Location Study
period

Study
design in
analysis

Sample
size N (%
women)

Age at
baseline

Ascertainment of
diabetes

Confounder
adjusted for

Results (estimatea, 95% CI, increment)

[34] SAPALDIA Multiple cities,
Switzerland

2002–2002 Cross
sectional

6,392 (52%) 52 Multimodal Age, sex, iSES,
nSES, smoking,
behavior, BMI,
area

Prevalence
NO2 1.21 (1.05, 1.39) per 10 μg/m3c

PM10 1.44 (1.21, 1.71) per 10 μg/m3c

[33] SAPALDIA Multiple cities,
Switzerland

2002–2011 Cohort 2,631 (52%) 53 multimodal Age, sex, iSES,
nSES, smoking,
behavior, BMI,
area

Incidence
NO2 0.92 (0.67, 1.26) per 15 μg/m3c

[42] CANHEART Ontario, Canada 2008–2008 Cross
sectional

2,496,458
(52%)

53 Disease register Age, sex, iSES,
nSES, area

Prevalence
NO2 1.16 (1.14, 1.17) per 10 ppbc

[37] SALIA North Rhine-
Westphalia,
Germany

1985–2006 Cohort 17,752
(100%)

54 Multimodal Age, sex,
smoking, BMI

Incidence
NO2 1.42 (1.16, 1.73) per 15 μg/m3c

PM2.5abs 1.27 (1.09, 1.48) per 0.39 1e-5/mc

Distance 2.54 (1.31, 4.91) (low education) < 100 vs. >100 m
Distance 0.92 (0.58, 1.47) (high education) < 100 vs. >100 m

[38] ALSWH Australia 2006–2011 Cross
sectional

269,912
(100%)

Range:
31–90

Doctor-diagnosed Age, smoking,
behavior, BMI,
area

Prevalence
NO2 1.04 (0.91, 1.20) per 3.7 ppbc

Distance: 0.99 (0.95, 1.04) 3 per 1 km

[64] CAFEH Boston,
Massachusetts,
United States

2009–2012 Cross
sectional

653 (58%) 60 Doctor-diagnosed Age, iSES Prevalence
PNC 0.71 (0.46, 1.10) per 1 particles/cm3; log-transformed

[65] CHAMPIONS Leicestershire,
United Kingdom

2004–2011 Cross
sectional

10,443
(47%)

59 Clinical
examination

Age, sex, iSES,
nSES, smoking,
behavior, BMI,
area

Prevalence
NO2 1.10 (0.92, 1.32) per 10 μg/m3c

PM10 1.3 (0.5, 2.9) per 10 μg/m3c

PM2.5 1.6 (0.4, 4.6) per 10 μg/m3c

[66] MESA Multiple cities,
United States

2000–2012 Cohort 5,135 (53%) 62–64
(with

diabetes)

Clinical
examination

Age, sex. iSES,
nSES, smoking,
behavior, BMI,
familial diabetes,
area

Incidence
NOx 1.04 (0.77, 1.40) per 47.1 ppba

PM2.5 1.05 (0.87, 1.26) per 2.43 μg/m3a

Distance 0.96 (0.80, 1.16) <100 vs. >100 m
Prevalence
NOx 1.29 (0.94, 1.76) per 47.1 ppb
PM2.5 1.16 (0.94, 1.42) per 2.43 μg/m3c

Distance 1.10 (0.91, 1.34) <100 vs. >100 m

[67] Nurses’ Health
Health
Professionals
Follow-Up

United States 1989–2002 Cohort 89,460
(83%)

55 Multimodal Age, sex, iSES,
smoking,
behavior, BMI,
familial diabetes,
hypertension,
year, area

Incidence
Distance 1.11 (1.01, 1.23) 0–49 vs. >200 m
Distance 0.96 (0.63, 1.48) 50–99 vs. >200 m
Distance 0.96 (0.87, 1.06) 100–199 vs. >200 m

(Continued on following page)
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TABLE 1 | (Continued) Characteristics of the studies reporting on the association of traffic-related air pollution and diabetes incidence or prevalence (Global 2022).

References Study name Location Study
period

Study
design in
analysis

Sample
size N (%
women)

Age at
baseline

Ascertainment of
diabetes

Confounder
adjusted for

Results (estimatea, 95% CI, increment)

[32] Rome
Longitudinal

Rome, Italy 2008–2013 Cohort 1,319,193
(55%)

Range:
35–70

Administrative data
from hospital and
insurance registries

Age, sex, iSES Incidence
NO2 1.00 (1.00, 1.01) per 10 μg/m3c

NOx 1.01 (1.00, 1.01) per 20 μg/m3c

PM2.5abs 1.00 (0.98, 1.02) per 1 × 10−5/mc

PM10 1.00 (0.99, 1.02) per 10 μg/m3

PM2.5 1.00 (0.98, 1.02) per 5 μg/m3c

PMcoarse 0.99 (0.97, 1.02) per 10 μg/m3

Prevalence
NO2 1.00 (1.00, 1.01) per 10 μg/m3c

NOx 1.01 (1.00, 1.01) per 20 μg/m3

PM2.5abs 0.98 (0.96, 0.99) per 1 × 10−5/m
PM10 0.99 (0.98, 1.00) per 10 μg/m3c

PM2.5 0.98 (0.96, 1.00) per 5 μg/m3c

PMcoarse 0.96 (0.94, 0.98) per 10 μg/m3

[68] ELISABET Lille and Dunkirk,
France

2011–2013 Cross
sectional

2,797 (53%) 53 Clinical
examination

Age, sex, iSES,
smoking,
behavior, BMI,
area

Prevalence
NO2 1.06 (0.90, 1.25) per 5 μg/m3c

PM10 1.04 (0.86, 1.25) per 2 μg/m3c

[39] HNR Ruhr Areas,
Germany

2000–2008 Cohort 3,607 (52%) 59 Clinical
examination

Age, sex, iSES,
nSES, smoking,
behavior, BMI,
area

Incidence
PM10 1.05 (1.00, 1.10) per 1 μg/m3

PM2.5 1.03 (0.95, 1.12) per 1 μg/m3c

traffic PM2.5 1.36 (0.97, 1.89) per 1 μg/m3

Distance 1.37 (1.04, 1.81) <100 vs. 100–200 m

[69] 33 CCHS Multiple cities,
China

2009–2009 Cross
sectional

15,477
(47%)

45 Clinical
examination

Age, sex, iSES,
smoking,
behavior, BMI,
familial diabetes,
area

Prevalence
NO2 1.22 (1.12, 1.33) per 9 μg/m3

[43] 33 CCHS Multiple cities,
China

2009–2009 Cross
sectional

15,477
(47%)

45, both Clinical
examination

Age, sex, iSES,
nSES, smoking,
behavior, (BMI)e,
familial CVD, co-
pollutants

Prevalence
NO2 1.20 (1.08, 1.32) per 10 μg/m3c

Abbreviations: CI, confidence interval; iSES, measures of individual socioeconomic status such as education; income; nSES, measures of neighborhood socioeconomic status such as neighborhood household income; BMI, body mass
index; area, area level adjustments such as city DDCH.
aEffect estimates can be ORs, RRs, HRs, or IRRs, depending on the analysis.
bAdjusted for other behavioral factors other than smoking such as diet, alcohol consumption or physical activity.
cEffect estimates included in meta-analysis.
dAdjusted for hypertension, COPD, asthma, congestive heart failure, acute myocardial infarction, and cancer.
eMultimodal strategies to identify diabetes cases include a combination of self-reported doctor-diagnosed cases, clinical examinations of blood sugar levels or use of medication for glycaemic control.
fBMI was not included but considered.
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of 5–42 μg NO2/m
3 and 4–25 μg PM2.5/m

3. The 11 cohort
studies, all conducted in Europe or North America, included
2,931 to over 1 million participants with a range of follow-up of
4–16 years. The ten cross-sectional studies had 513 up to
2.5 million participants.

Diabetes definitions varied, and included self-report of
physician-diagnosed diabetes (five studies), disease registers
(two studies), administrative data (e.g., insurance claims)
indicating diabetes diagnosis or prescription of hypoglycemic
medications (three studies), clinical examinations at study
centers, measuring blood glucose (five studies), or using a
combination of different data sources (blood glucose
measurements, questionnaire, medication, data linkage, six
studies). Most smaller cohort studies (n < 10,000 participants)
used clinical examinations (SAPALDIA, HNR, MESA,
CHAMPIONS) or self-reported physician-diagnosed diabetes,
whereas larger administrative cohort or cross-sectional studies
typically relied on linkage to administrative databases or registers
(e.g., ONPHEC, Rome longitudinal, Table 1).

Results of Meta-Analysis
Meta-analyses indicated positive associations of all traffic-related
air pollutants with diabetes incidence and prevalence, though
estimates were imprecise (Figure 1). For example, higher
exposure to NO2, the TRAP for which there were the most
studies (seven studies), corresponded to higher diabetes
prevalence (RR 1.09; 95% CI: 1.02; 1.17 per 10 μg/m3); the
individual estimates were highly heterogeneous, especially for
the NO2 results (Figure 2). The association was less pronounced
for diabetes incidence (RR 1.04; 95% CI: 0.96; 1.13 per 10 μg/m3;
Figure 3). The summary estimates for EC, PM2.5 and PM10 were
also positive but even less precise and based on fewer individual
studies.

Results From Studies Not Entering
Meta-Analysis
For pollutants not included in the meta-analyses (such as ultrafine
particles PNC or NO, marked in Table 1 without c) elevated risks
were observed formeasures of NOx but not the variousmeasures of
PM in the prevalence analyses. The incidence analyses showed
elevated risks for diabetes with NO and PNC. Notably, the traffic-
specific PM2.5 in the HNR cohort [39] yielded a substantially larger
association compared to the total PM2.5 mass estimates (RR 1.36 vs.
1.03 or 1.05 per 1 μg/m3). All but one study (MESA) showed
positive (though imprecise) associations with distance and density
of traffic (Table 1, Supplementary Figures S3, S4).

Risk of Bias and Subgroup and Sensitivity
Analysis
The ONPHEC [40], British Columbia Diabetes Cohort [41],
CANHEART [42], and Rome Longitudinal study [32] were
considered to have high RoB due to incomplete confounder
control (missing adjustment for smoking or socioeconomic
status). The SAPALDIA cohort [33, 34] was considered to
have high potential for selection bias due to long survival in a

cohort before inclusion into the analysis and the 33 CCHS
study had extensive missing data [43] (Supplementary
Table S5).

In subgroup analyses excluding these studies, association
magnitudes were similar or larger (Supplementary
Tables S6, S7). For example, restricting to prevalence studies
with smoking adjustment eliminated heterogeneity entirely and
yielded meta-analytic estimates for NO2 of 1.09 [95% CI: 1.02;
1.17] (from 1.17 [1.09; 1.25]), and for PM10 of 1.19 [0.87; 1.63]
(from 1.43 [1.28; 1.59]).

Five studies evaluated confounding by concurrent noise
exposure (British Columbia Diabetes Cohort, Plovdiv Diabetes
Survey, both SAPALDIA analyses, Rome longitudinal [32–34, 41,
44], Supplementary Table S8). Most TRAP effect estimates were
attenuated upon noise adjustment, but still showed elevated risks.
For example, the NO2 prevalence results in the SAPALDIA study
were reduced from 1.21 [1.05; 1.39] to 1.19 [1.03, 1.38] when
adjusting for noise [34].

Confidence Assessments
Themodified OHAT assessment was conducted for the 16 studies
entering meta-analyses (Table 2). Among factors reducing the
quality of the evidence, the most common factor was imprecision
(wide CI and including unity despite sufficient sample size). For
NO2 and diabetes incidence, the confidence was upgraded due to
monotonic exposure-response functions reported in two studies
[40, 45]. We upgraded the evidence on NO2 and prevalence due
to potential downward bias. We arrived at a moderate confidence
assessment for overall TRAP based on the moderate confidence
for NO2. While the confidence was low for the other pollutants,
the associations for these pollutants were suggestive of an
association, though imprecise.

A confidence rating of moderate was also reached in the
narrative assessment that considered all studies. This rating
was based on the meta-analytical evidence of an association of
NO2 with diabetes prevalence and suggestive evidence of an
association of NO2, NOx, traffic-related PM with incident and
prevalent diabetes. The confidence in the evidence was further
supported by the monotonic exposure-response relationships
reported in two studies, positive albeit imprecise associations
involving indirect traffic measures, and numerous positive
associations from studies that adjusted for likely confounders.
Further, associations generally remained positive after
adjustment for noise exposure (Supplementary Table S8).
Finally, effect estimates were larger among the subgroup of
studies with more extensive confounder adjustment, and
among studies that used comprehensive outcome
ascertainment methods (versus self-report and administrative
data) (Supplementary Tables S6, S7).

Study Characteristic and Supplemental
Analysis of Studies From the Extended
Search
Since our systematic search ending in July 2019, new studies have
been published on TRAP and diabetes.We extended our search to
May 2022 resulting in 304 hits. Five studies met the inclusion
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FIGURE 2 | Forest plots of adjusted RRs (95% CIs) for diabetes prevalence with NO2, PM10, and PM2.5 (Global 2022). The size of the grey squares represents the
weight of the study in the meta-analysis. The following increments were used: 10 μg/m3 for NO2, 20 μg/m3 for NOx, 1 μg/m3 for EC, 10 μg/m3 for PM10, and 5 μg/m3 for
PM2.5. Effect estimates cannot be directly compared across the different traffic-related pollutants because the selected increments do not necessarily represent the
same contrast in exposure.

FIGURE 1 | Meta-analysis of associations between traffic-related air pollutants and diabetes prevalence (empty squares) and incidence (filled squares) (Global
2022). The following increments were used: 10 µg/m3 for NO2, 20 μg/m3 for NOx, 1 μg/m3 for EC, 10 μg/m3 for PM10, and 5 μg/m3 for PM2.5. Effect estimates cannot be
directly compared across the different traffic-related pollutants because the selected increments do not necessarily represent the same contrast in exposure.
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criteria (Table 3) adding estimates to all meta-analyses on
diabetes incidence and the PM2.5 prevalence analyses
(Supplementary Figures S5–S7). While the pooled estimates
did not change dramatically, risk estimates were still elevated
and confidence intervals became narrower; especially for the
PM2.5-incidence analyses that was borderline significant
(Supplementary Figure S5). Additionally, the Danish study
[46] with traffic-specific pollutant estimates and the HNR
analysis from 2020 [47] with longer follow-up and refined
source-specific exposure assessment as compared to the
2015 analysis [39] showed significantly elevated risks related to
traffic-specific NO2, EC, and PM2.5. Both also add to the evidence
on ultrafine particles. However, measures were not comparable
and thus meta-analysis was not possible for the different metrics
of UFP. Overall, the results of the HEI 2022 review were
strengthened by supplemental analyses of the studies identified
in the updated search.

DISCUSSION

In this comprehensive systematic review of epidemiologic
evidence on the association of TRAP with adult diabetes, we
identified 21 pertinent studies. Our summary estimates generally

suggested an adverse association of TRAP with diabetes risk,
although some of the effect estimates were imprecise and based
on small numbers of studies per pollutant-outcome pair. A
statistically significant association was reported between NO2

and diabetes prevalence with a summary estimate of 1.09 (95%
CI: 1.02; 1.17) per 10 μg/m3, supported by consistently positive
but imprecise estimates for the other traffic-related air pollutants.
Results were strengthened by the reporting of a monotonic
exposure-response function in two studies [40, 45], positive
associations in studies examining indirect traffic measures, and
robust results correcting for traffic noise. The confidence
assessment yielded a moderate confidence in the evidence for
an association between long-term exposure to TRAP and
diabetes. We noted more consistent associations of TRAP with
diabetes prevalence than incidence.

The newly identified five studies, with mostly rigorous
outcome assessments strengthened the results. Confidence
intervals of meta-analytic estimates in the supplemental
analyses were less wide, though estimates were still not
significantly elevated.

Findings in Relation to Other Reviews
Recent reviews of ambient air pollution—as opposed to our
focus on traffic-related air pollution—in association with

FIGURE 3 | Forest plots of adjusted RRs (95% CIs) for diabetes incidence with NO2, NOx, EC and PM2.5 (Global 2022). The size of the grey squares represents the
weight of the study in the meta-analysis. The following increments were used: 10 µg/m3 for NO2, 20 µg/m3 for NOx, 1 µg/m3 for EC, 10 µg/m3 for PM10, and 5 µg/m3 for
PM2.5. Effect estimates cannot be directly compared across the different traffic-related pollutants because the selected increments do not necessarily represent the
same contrast in exposure.
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TABLE 2 | Confidence rating for the quality in the body of evidence for traffic-related air pollution and diabetes (Global 2022).

Pollutant High ++++ Factors decreasing confidence “0” if no concern; if serious concern
to downgrade confidence

Factors increasing confidence “0” if not present; “+” if
sufficient to upgrade confidence

Final
confidence

rating

Rating across
study designsModerate +++

Low ++

Very low +

Study
design

Initial
confidence
rating (#
studies)

Risk of bias Unexplained
inconsistency

Imprecision Publication
bias

Monotonic
exposure-
response

Consideration of
residual

confounding

Consistency
across

populations

NO2 Cohort +++ (N = 7) 0 - - 0 + 0 0 ++ (Low) +++ (Moderate)
Rationale Cohort design

initially rated as
moderate

Four studies
with high RoB
but results not
sensitive to
exclusions of
those studies

High
heterogeneity (I2 =
95%), due to both
magnitude and
direction

Sample size
met, but
confidence
interval wide
and includes
unity

No formal
evaluation
possible

Two influential
studies show
monotonic ERF
(Andersen,
2012b; Bai,
2018)

Confounding in both
directions possible

Too few studies
to evaluate

The combined
rating is based on
the higher
confidence rating.
Both study
designs show
evidence of a
positive
association,
therefore no
reason for a
downgrade

Cross-
sectional

++ (N = 7) 0 0 0 0 0 + 0 +++
(Moderate)

Rationale Cross-
sectional
design initially
rated as low

Three studies
with high RoB,
increased or
stable effect
estimates after
excluding high
RoB studies

High
heterogeneity (I2 =
98%) due to
magnitude not
direction

Sample size
met, and
confidence
interval does
not include
unity

No formal
evaluation
possible

No evidence of
plausible shape
of ERF.

Larger estimates in
studies with better
confounder control
suggests residual
confounding toward
the null

Across different
populations
robust effect, but
too few studies

NOX Cohort +++ (N = 4) 0 0 - 0 0 0 0 ++ (Low) NA
Rationale Cohort design

initially rated as
moderate

One study high
RoB, but
increased
estimate after
exclusion

Moderate
heterogeneity (I2 =
68%) mostly due
to magnitude not
direction

Sample size
met, but
confidence
interval wide
and includes
unity

No formal
evaluation
possible

No evidence of
plausible shape
of ERF

Confounding in both
directions possible

Too few studies
to assess
robustness
across
populations

EC Cohort +++ (N = 3) 0 0 - 0 0 0 0 ++ (Low) NA
Rationale Cohort design

initially rated as
moderate

Elevated
estimate based
on one study
with moderate
RoB. Two
studies with high
RoB show effect
closer to the null

High
heterogeneity (I2 =
88%) due to
magnitude not
direction

Sample size
met, but
confidence
interval wide
and includes
unity

No formal
evaluation
possible

No evidence of
plausible shape
of ERF.

Confounding in both
directions possible

Insufficient
evidence for
robustness
across
populations

(Continued on following page)
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TABLE 2 | (Continued) Confidence rating for the quality in the body of evidence for traffic-related air pollution and diabetes (Global 2022).

Pollutant High ++++ Factors decreasing confidence “0” if no concern; if serious concern
to downgrade confidence

Factors increasing confidence “0” if not present; “+” if
sufficient to upgrade confidence

Final
confidence

rating

Rating across
study designsModerate +++

Low ++

Very low +

Study
design

Initial
confidence
rating (#
studies)

Risk of bias Unexplained
inconsistency

Imprecision Publication
bias

Monotonic
exposure-
response

Consideration of
residual

confounding

Consistency
across

populations

PM10 Cross-
sectional

++ (N = 4) 0 0 - 0 0 0 0 + (Very low) NA

Rationale Cross-
sectional
design initially
rated as low

One of 4 studies
high RoB but
increased
estimate upon
exclusion of the
high RoB study

High
heterogeneity (I2 =
84%) due to
magnitude not
direction

Sample size
met, but
confidence
interval wide
and includes
unity

No formal
evaluation
possible

No evidence of
plausible shape
of ERF.

Larger estimates in
studies with better
confounder control,
but number of studies
considered too small
for upgrade

All studies
European, no
consistency
check possible

PM2.5 Cohort +++ (N = 4) 0 0 - 0 0 0 0 ++ (Low) ++ (Low)
Rationale Cohort design

initially rated as
moderate

Two studies high
RoB, but
increased
estimate upon
exclusion of high
RoB studies

Moderate
heterogeneity (I2 =
64%) due to
magnitude not
direction

Sample size
met, but
confidence
interval wide
and includes
unity

No formal
evaluation
possible

No evidence of
plausible shape
of ERF.

Larger estimates in
studies with better
confounder control,
but number of studies
considered too small
for upgrade

Insufficient
evidence for
robustness
across
populations

Both study
designs show
estimates in the
same direction

Cross-
sectional

++ (N = 3) 0 0 - 0 0 0 0 + (Very low)

Rationale Cross-
sectional
design initially
rated as low

One study high
RoB, no
sensitivity
analysis due to
low numbers

Low heterogeneity
(I2 = 32%)

Sample size
met, but
confidence
interval wide
and includes
unity

No formal
evaluation
possible

No evidence of
plausible shape
of ERF

Larger estimates in
studies with better
confounder control,
but number of studies
too small

Insufficient
evidence for
robustness
across
populations

The downgrading factor indirectness and the upgrading factor large magnitude of effect were not considered further.
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TABLE 3 | Characteristics of the studies from extended search up to May 2022 reporting on the association of traffic-related air pollution and diabetes incidence or prevalence (Global 2023).

Reference Study name Location Study
period

Study
design in
analysis

Sample
size N (%
women)

Age at
baseline

Ascertainment of
diabetes

Confounder
adjusted for

Results (estimatea, 95% CI, increment)

[47] HNR Ruhr Areas,
Germany

2006–2015 Cohort 2,451 (52%) 58 Self-reported or
medication or clinical
examination

Age, sex, smoking,
behavior, noise
(extended models
unchanged results
iSES, nSES)

Incidence
NO2: 1.02 (0.99, 1.05) per 1 μg/m3b

traffic NO2: 1.06 (1.01, 1.12) per 1 μg/m3

PM10: 1.06 (1.01, 1.12) per 1 μg/m3

traffic PM10: 2.00 (1.19, 3.34) per 1 μg/m3

PM2.5: 1.06 (0.98, 1.16) per 1 μg/m3b

traffic PM2.5: 2.13 (1.26, 3.61) per 1 μg/m3

PNC<1: 1.29 (1.10, 1.53) per 500 particles/mL
traffic PNC < 1: 2.11 (1.04, 4.28) per 500 particles/mL

[46] National Danish
Register

Denmark 2005–2017 Prospective
cohort

2,631,488
(51.4%)

52 Administrative data
from hospital and
prescription
registers

Age, sex, iSES,
nSES

Incidence
NO2: 1.056 (1.046, 1.065) per 7.15 μg/m3b

traffic NO2: 1.039 (1.031, 1.047) per 5.17 μg/m3

EC: 1.022 (1.016, 1.027) per 0.28 μg/m3b

traffic EC: 1.037 (1.030, 1.043) per 0.17 μg/m3

PM2.5: 1.043 (1.031, 1.056) per 1.85 μg/m3b

traffic PM2.5: 1.026 (1.020, 1.031) per 0.37 μg/m3

PNC: 1.052 (1.042, 1.063) per 4,248 particles/mL
traffic PNC: 1.049 (1.040, 1.058) per 1,698 particles/mL

[70] 487 Municipalities Multiple cities,
Indonesia

2013 Cross
sectional

647,947
(52%)

42 Self-reported Age, sex, iSES,
smoking, behavior,
BMI, area,
intermediate

Prevalence
PM2.5: 1.09 (1.05, 1.14) per 10 μg/m3

[71] JHS Jackson,
Mississippi,
United States

2000–2008 Cohort 5,128 (63%) 55 Clinical examination
or medication

Age, sex, nSES,
smoking, behavior,
familial diabetes,
BMI, others, area

Incidence
PM2.5: 1.09 (0.90, 1.32) per 0.81 μg/m3b

Prevalence
PM2.5: 1.08 (1.00, 1.17) per 0.81 μg/m3

Distance: 0.91 (0.61, 1.36) <150 vs. 1,000 m
Distance: 0.94 (0.74, 1.20) 150–299 vs. 1,000 m
Distance: 1.01 (0.91, 1.12) 300–999 vs. 1,000 m

[72] SALSA Sacramento,
California,
United States

1998–2007 Cohort 1,075 (59%) 71 Self-reported,
medication or clinical
examination

Age, sex, iSES,
nSES, smoking, co-
pollutant

Incidence
NO2: 1.02 (0.98, 1.05) per 6.1 ppbb

NOx: 1.13 (0.96, 1.33) per 2.3 ppbb

PM2.5: 1.20 (1.03, 1.40) per 1.9 μg/m3b

Abbreviations: CI, confidence interval; iSES, measures of individual socioeconomic status such as education; income; nSES, measures of neighborhood socioeconomic status such as neighborhood household income, BMI, body mass
index; area, area level adjustments such as city DDCH.
aEffect estimates can be ORs, RRs, HRs, or IRRs, depending on the analysis.
bEffect estimates included in meta-analysis
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diabetes found similar results (Supplementary Table S9). With a
larger study base, Lui et al. [6] and Yang et al. [5] not only reported
significantly elevated risks for diabetes prevalence with NO2, but
also with PM10, and PM2.5 (for example, including 11 studies vs.
3 studies in the PM2.5 prevalence analyses). Diabetes incidence risk
was significantly elevated with PM2.5 in both reviews, and
additionally with PM10 in the analysis by [5] considering two
more studies. As in our analysis, the reviews did not find a
significantly elevated risk with NO2 and diabetes incidence.
Effect estimates seemed slightly larger in our prevalence
analysis, though more imprecise (for example, 1.09 [1.02; 1.17]
vs. 1.05 [1.03; 1.08] and 1.07 [1.04; 1.11]) in the NO2 prevalence
analysis. Another review reported elevated diabetes risks in
association with living close to major roads [48].

Biological Mechanisms
Plausible pathways regarding how TRAP could lead to diabetes are
discussed in the literature. Important mechanisms include
oxidative stress induced inflammation leading to endothelial
and mitochondrial dysfunction, resulting in impaired insulin
signalling and insulin resistance [10]. Animal studies provide
evidence that exposure to high concentrations of traffic particles
may be a risk factor in the development of diabetes [49–51]. Studies
evaluating mechanistic pathways underlying such metabolic
perturbations induced by urban PM and near roadway air
pollution have identified possible contributory roles played by
inflammation and altered fatty acid metabolism. Indeed, Lucht
et al. [47] observed that diabetes incidence in an adult population
was mediated by markers of inflammation (adiponectin and
C-reactive protein). While our results build on evidence found
especially for the association with NO2, mechanistic studies on
NO2 are scarce [52] and NO2 could be an indicator for other highly
correlated pollutants from the same source. However, a recent
study on Witstar rats was able to demonstrate reactive oxygen
species formation and mitochondrial and endothelial dysfunction
after 3 weeks of repeated high NO2 exposure [53]. Epidemiologic
studies also found TRAP-associated higher risks for glucose
homeostasis dysregulation measured as insulin concentration in
cord blood, fasting blood glucose, insulin sensitivity, HOMA-IR,
HbA1c in newborns [54], children [55, 56], adolescents [57], and
adults [58] indicating a role of early-life exposure.

Strengths
The systematic approach to study selection and evaluation using
an a priori specified framework for exposure assessment and for a
systematic evaluation of the epidemiological evidence are major
strengths of this review. Even though none of the pollutants are
uniquely traffic-specific, the use of several indicators of TRAP
allowed the evaluation of consistency across pollutants and
enabled the Panel to base its conclusions on a larger number
of studies with diverse exposure metrics. Additionally, the
application of two complementary methods (the modified
OHAT assessment for studies entering meta-analyses and the
narrative assessment considering all studies for the evaluation of
the epidemiological evidence maximizes what can be learned
from the epidemiologic studies, including evidence from less
studied pollutants like UFP and traffic-specific PM fractions.

Limitations
The overall number of studies per pollutant was small, limiting
our ability to conduct meta-analysis or subgroup analysis for
some exposure-outcome pairs, and to investigate publication bias.

It has been proposed that effects of air pollutants on the
metabolic system commence at an early age [54, 55]. Studies
entering this review, including the newest available studies,
comprised older adult populations (mean age >50 years) and
have excluded persons with already manifest pollutant-
dependent diabetes at baseline from the incidence analyses.
Thus, a selection bias toward a healthier population might have
compromised the ability to study associations with diabetes
incidence. The subgroup analysis showed more robust results for
studies with low risk of selection bias (Supplementary Table S6).

Another limitation refers to the possible underestimation and
misclassification of diabetes. This may depend on the age of the
study participants regarding results on incidence of diabetes or on
study design and available data sources. Cohort studies with
individual data or smaller cross-sectional studies show more
rigorous outcome ascertainment with less risk of bias as opposed
to the larger studies based on administrative data. Reliance on self-
report or documented disease would miss 24% up to 50% of cases
depending on the region, while in-depth study center examinations
will have amuch higher sensitivity due to the long oligosymptomatic
prediagnostic phase of diabetes [2]. Non-differential outcome
misclassification (independent from exposure status) related to
incomplete case ascertainment might bias the results to the null
[59, 60]. This was seen for prevalence studies in the sub-group
analysis regarding risk of bias due to outcome ascertainment, but not
incidence studies (Supplementary Tables S6, S7).

We were not able to distinguish between type 1 and type
2 diabetes. Since 90% of adult diabetes cases are type 2, and the
vastmajority of incident diabetes cases in adults are type 2 diabetes,
we conclude that our results primarily refer to type 2 diabetes.

Future Research
In cities, where the majority of the world´s population resides,
traffic remains an important source of air pollution. The majority
of studies were from high-income countries in Europe and North
America with generally lower levels of air pollution than in other
world regions. However, the one study from China with mean
exposure at the higher end of the exposure range (35.3 μg/m3 NO2)
also showed increased risk of diabetes. The available evidence
provides overall moderate evidence that TRAP increase diabetes
risk. Large studies with rigorous case ascertainment are needed,
including in low and middle income countries and other locations
with higher exposures. Studies are also needed to assess the change
in composition of TRAP due to diesel and gasoline fleet turnover to
lower-emission vehicles with a rising share of non-tailpipe
emissions in the overall share of traffic-related particulate
matter (e.g., from SO2 emissions). The interplay of TRAP with
co-exposures in polluted spaces, most notably noise and green
space, needs to be better understood for effective intervention [61].

Studies assessing critical windows of exposure, e.g., in younger
populations and preclinical outcomes along the mechanistic path
to clinically manifest disease are warranted. Evidence suggests
that underlying pathology may be underway as early as childhood
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and adolescence [62]. Future experimental studies should provide
more mechanistic evidence for a better understanding of the
molecular and cellular actions of long-term exposure to NOx and
other TRAP on the cardiometabolic system.

Conclusion
In conclusion, we found moderate confidence in the evidence for
an association of long-term exposure to traffic-related air
pollution and diabetes, with higher effect estimates observed in
prevalence studies. We observed increased risks in populations in
various geographical regions and contexts and conclude, that
TRAP is a risk factor for diabetes.
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