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Objective: To develop a machine learning (ML) model utilizing transfer learning (TL)
techniques to predict hypertension in children and adolescents across South America.

Methods: Data from two cohorts (children and adolescents) in seven South American
cities were analyzed. A TL strategy was implemented by transferring knowledge from a
CatBoost model trained on the children’s sample and adapting it to the adolescent
sample. Model performance was evaluated using standard metrics.

Results: Among children, the prevalence of normal blood pressure was 88.9%
(301 participants), while 14.1% (50 participants) had elevated blood pressure (EBP). In the
adolescent group, the prevalence of normal bloodpressurewas 92.5% (284 participants), with
7.5% (23 participants) presenting with EBP. Random Forest, XGBoost, and LightGBM
achieved high accuracy (0.90) for children, with XGBoost and LightGBM demonstrating
superior recall (0.50) and AUC-ROC (0.74). For adolescents, models without TL showed poor
performance, with accuracy and recall values remaining low and AUC-ROC ranging from
0.46 to 0.56. After applying TL, model performance improved significantly, with CatBoost
achieving an AUC-ROC of 0.82, accuracy of 1.0, and recall of 0.18.

Conclusion: Soft drinks, filled cookies, and chips were key dietary predictors of elevated
blood pressure, with higher intake in adolescents. Machine learning with transfer learning
effectively identified these risks, emphasizing the need for early dietary interventions to
prevent hypertension and support cardiovascular health in pediatric populations.
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INTRODUCTION

Hypertension (HTN) is a prevalent medical condition, affecting
approximately one in four individuals worldwide, and represents
a significant risk factor for heart disease, stroke, kidney failure,
and mortality [1]. It is the leading global cause of morbidity and
mortality associated with cardiovascular diseases (CVD). The
complexity of HTN lies not only in its widespread prevalence but
also in its asymptomatic progression during early stages, often
delaying timely diagnosis and treatment [2].

The global burden of hypertension has increased significantly
over recent decades, rising from 594 million cases in 1975 to
1.13 billion in 2015, with the majority of this growth occurring in
low- and middle-income countries. This rise is primarily
attributed to aging populations, lifestyle modifications, and
demographic expansion. Approximately 13% of all deaths
globally are associated with hypertension, underscoring its role
as a major public health challenge that affects all sectors of
society [3, 4].

Evidence from pathophysiological and epidemiological studies
highlights the association between hypertension during
childhood and an increased risk of hypertension and adverse
cardiovascular events in adulthood. However, identifying HTN in
pediatric populations poses unique challenges due to the dynamic
changes in growth and development that complicate
standardization of definitions and measurements, as well as
the assessment of cardiovascular outcomes in children
compared to adults [5, 6].

Data on the prevalence of elevated blood pressure in children
are often derived from the National Health and Nutrition
Examination Survey (NHANES) and are frequently limited to
a single blood pressure measurement session [7, 8]. Since 1988,
research has documented a rising prevalence of elevated blood
pressure in children, including both hypertension and
prehypertension, with rates consistently higher among boys
(15%–19%) compared to girls (7%–12%). Preventive strategies
targeting individuals and high-risk groups are essential to
mitigate the long-term consequences of HTN. The necessity
for early identification of at-risk individuals has spurred
increasing interest in predictive models for hypertension
risk [9, 10].

In recent years, artificial intelligence (AI) has emerged as a
transformative tool in healthcare, demonstrating its utility in
managing a variety of clinical conditions [11, 12]. AI facilitates
the development of accurate risk prediction models for HTN by
integrating traditional cardiovascular risk factors with multi-
omic, socioeconomic, behavioral, and environmental data,
thereby enabling the formulation of personalized treatment
approaches [13].

A promising innovation within the domain of AI is transfer
learning (TL), a machine learning (ML) technique that
repurposes models trained for one task as a foundation for
related tasks. TL is particularly advantageous in scenarios
where the target dataset is limited, a common challenge in
pediatric health research. For instance, TL has been
successfully employed in studies predicting diabetes and
cardiovascular diseases by leveraging large datasets to enhance

predictive accuracy in smaller, specific populations [14]. Previous
studies have demonstrated the efficacy of TL in predicting glucose
levels among patients with type 1 diabetes, where it substantially
improved model performance despite limited data availability. In
the context of HTN, TL has the potential to transfer knowledge
from models trained on extensive adult datasets to pediatric
populations, thereby addressing the scarcity of data in children
and adolescents [15, 16].

Given the increasing prevalence of elevated blood pressure in
the pediatric population and its significant long-term health
implications, this study aims to develop a machine learning
model employing transfer learning to predict hypertension in
children and adolescents in South America. By leveraging data
from a comprehensive pediatric database, this study seeks to
improve the accuracy of predictions and facilitate early
interventions in these populations.

METHODS

Study Design
This study utilized data from the “South American Youth/Child
Cardiovascular and Environmental (SAYCARE)” Study, an
observational, cross-sectional epidemiological investigation
conducted across seven South American cities: Buenos Aires
(Argentina), Lima (Peru), Medellín (Colombia), Montevideo
(Uruguay), Santiago (Chile), São Paulo (Brazil), and Teresina
(Brazil) in the academic year 2015 and 2016. These cities were
selected based on their hosting of specialized research centers and
their populations exceeding 500,000 inhabitants (Figure 1).

Study Population
The general study population consisted of 1,067 children (aged
3–10 years) and 495 adolescents (aged 11–18 years), enrolled in
educational institutions ranging from preschool to the third year
of high school, encompassing both public and private schools
across the participating cities. From this overall cohort,
351 children and 307 adolescents were selected specifically for
the hypertension prediction analyses. The sample size was
determined based on prior experience with multicentric
projects and insights gained from foundational studies,
including the Healthy Lifestyle in Europe by Nutrition in
Adolescence Cross-Sectional Study (HELENA-CSS) and the
IDEFICS (Identification and Prevention of Dietary- and
Lifestyle-Induced Health Effects in Children and Infants)
Study [17, 18]. Additionally, a feasibility pilot study was
conducted to assess the reliability and validity of the employed
methods, ensuring robust methodological underpinnings. This
research aims to address critical knowledge gaps in the health of
children and adolescents, thereby providing a solid evidence base
for future health interventions and policy initiatives targeting
these populations [19].

Blood Pressure Measurement
Blood pressure was measured using the Omron HEM-7200, a
validated digital oscillometric device for pediatric populations
[20]. Calibration involved activating the inflation mechanism and
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was performed for all devices used during the study.
Measurements were taken on the right arm to account for
potential aortic coarctation, with the arm positioned at heart
level. Participants sat in a quiet setting with their backs supported,
one arm resting on a flat surface, and feet uncrossed and flat on
the floor. After a 5-min rest, blood pressure was measured
following protocols from the American Heart Association and
British Hypertension Society [21]. Two readings were taken 2min
apart; a third measurement was conducted if the difference
between readings exceeded 5 mmHg. Elevated blood pressure
was defined as systolic or diastolic readings above the 95th
percentile for sex, age, and height, per American Academy of
Pediatrics guidelines. Sensitivity and specificity analyses assessed
the accuracy of the Omron HEM-7200 compared to mercury
column readings [22].

Data Preprocessing
Missing Data Imputation and Preprocessing
The treatment of missing data prioritized dataset integrity
and minimization of bias, following a structured and
systematic approach. Initially, variables not selected for
inclusion in the study were discarded. Next, missing values
were identified, and their prevalence was quantified for
each variable.

Records with missing values in critical variables (i.e., those
with more than 30% missing data) were removed to prevent
significant analytical bias. For variables with less than 30%
missing values, imputation was performed using the median
for numerical variables and the mode for categorical variables,
ensuring that essential information was retained while
maintaining dataset consistency.

FIGURE 1 | South American Youth/Child Cardiovascular and Environmental (SAYCARE) Study (2015/2016) research centers by country. *SAYCARE Study, South
American Youth/Child Cardiovascular and Environmental Study held in Buenos Aires (Argentina), Lima (Peru), Medellin (Colombia), Montevideo (Uruguay), Santiago
(Chile), and São Paulo and Teresina (Brazil).
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To further enhance data quality and model performance,
highly correlated variables (correlation coefficient >0.90) were
eliminated to mitigate multicollinearity issues. The final dataset
underwent rigorous validation to confirm its suitability for
subsequent predictive modeling tasks.

This approach, grounded in established best practices, ensured
a robust, reliable, and analytically sound dataset while
minimizing unnecessary data loss or distortion.

Predictors Variables
The variable selection process was guided by evidence from
previous studies, a comprehensive literature review, and
consultations with subject matter experts [23, 24]. The
predictors were measured using reliable and validated
questionnaires tailored to the age group, derived from the
SAYCARE Study [20, 25–31], whose instruments underwent
rigorous validation and adaptation processes to ensure their
accuracy and suitability.

A total of 28 variables were incorporated into the predictive
model including sociodemographic [biological sex, age],
socioeconomic factors [household income (monthly family
income based on the minimum wage) and maternal education
(< high school, high school, technical education, ≥ university
degree)], environmental [sex, age, place of residence, the specific
location of the school and questions about the social environment
and infrastructure of the residential area], and energy balance
behaviors [dietary intake patterns (food items usual
consumption), daily physical activity level (moderate-to-
vigorous physical activity during physical education classes,
leisure time, and transportation), sleep duration (average
hours total night sleep time), and daily screen time (spends in
front of a television or computer or playing video games)] and
waist circumference (cm). The entire description of the predictors
is in the Supplementary Material S1, S2.

Ethical Considerations
The study followed strict ethical guidelines to ensure participant
safety and informed consent. A formal request detailing the
study’s objectives and methodology was presented to school
administrations, allowing them to consent to participate in the
project. For the schools that agreed, potential participants and
their parents or guardians received an information letter and a
verbal explanation. Informed consent was obtained through the
signed Informed Consent Form (ICF) by parents or guardians,
and participants provided their signatures on an Assent Form
when required. The study was approved by the Research Ethics
Committee of the Faculty of Medicine of the University of São
Paulo (FMUSP) under research protocol no 232/14, as well as by
the respective research ethics committees of all
participating centers.

Statistical Analysis
Descriptive analyses were performed using mean and standard
deviation (SD) for continuous variables and percentages for
categorical variables. The machine learning methods used in
this study included Random Forest, XGBoost, LightGBM, and
CatBoost, chosen for their robustness, ability to handle

heterogeneous data, and high effectiveness in modeling
nonlinear relationships. The analyses were conducted using
Python (version 3.6.5), with the support of libraries such as
scikit-learn and SHAP for interpretability analysis.

To evaluate the model’s performance, we employed metrics
such as accuracy, recall, F1 score, and area under the ROC curve
(AUC-ROC), with AUC-ROC serving as the primary criterion for
selecting the final model, complemented by consistent results in
other metrics. A 5-fold cross-validation was performed to ensure
that the models were tested on different data subsets, reducing the
risk of overfitting.

Hyperparameter optimization was carried out using the
GridSearchCV function, enabling a systematic search for the
best parameter combinations to maximize performance. This
methodological approach ensured the robustness and
reliability of the predictive models, contributing to an accurate
and consistent analysis of hypertension in the pediatric
population.

Model Development and Performance
The study population was randomly divided into training and test
sets, comprising 70% and 30% of the total sample, respectively.
Hyperparameter tuning was performed to enhance model
performance, with the GridSearchCV function from the scikit-
learn package utilized to identify the optimal hyperparameters.

A 5-fold cross-validation was employed during training to
evaluate the model’s performance and mitigate the risk of
overfitting. The final assessment of model performance was
conducted exclusively on the test set. Feature importance
rankings were calculated based on the differences in the
approaches used by each model.

Four widely recognized algorithms for supervised predictive
analysis were employed in this study: Random Forest, XGBoost,
LightGBM, and CatBoost. Model performance was evaluated
using standard predictive metrics, including accuracy, recall,
F1 score, and the AUC-ROC. Model selection prioritized the
algorithm with the highest AUC, alongside consistent
performance across the other metrics.

Class Imbalance
To address class imbalance in the training dataset, an oversampling
strategy was employed. An initial assessment of the class distribution
revealed a significant discrepancy between the majority class (class 0:
non-hypertensive) and the minority class (class 1: hypertensive). To
mitigate this issue, the RandomOverSampler function was used to
apply an oversampling technique, setting the oversampling ratio to 1.
This process resulted in an equal number of samples for both classes.
This approach was essential to ensure balanced representation of
both classes during model training, thereby improving the
performance and reliability of the predictive models for
hypertension.

Transfer Learning
Transfer Learning (TL) is a machine learning approach that
leverages knowledge gained in a specific domain or task and
applies it to another, related domain or task. This technique has
been widely utilized in various fields, including image recognition
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TABLE 1 | Descriptive statistics of the features included in the predictive model, categorized by age group, South American Youth/Child Cardiovascular and Environmental
(SAYCARE) Study (2015/2016).

Feature Children Adolescents

Sex [n (%)]
Female 246 (52.6) 157 (51.1)
Male 222 (47.4) 150 (48.9)
School [n (%)]
Public 265 (56.6) 176 (57.3)
Private 203 (43.4) 131 (42.7)
Family Income [n (%)]
1 Minimum Wage 6 (6.7) 18 (11.8)
1 to 2 Minimum Wage 12 (13.3) 36 (23.7)
2 to 5 Minimum Wage 12 (13.3) 37 (24.3)
5 to 10 Minimum Wage 14 (15.6) 17 (11.2)
10 to 15 Minimum Wage 9 (10.0) 10 (6.6)
15 to 20 Minimum Wage 6 (6.7) 6 (3.9)
20 to 25 Minimum Wage 5 (5.6) 2 (1.3)
More than 25 Minimum Wage 7 (7.8) 6 (4.0)
Don’t know/Will not inform 19 (21.1) 20 (13.2)
Maternal Education Level [n (%)]
Lower education 7 (7.3) 16 (10.1)
Lower secondary education 11 (11.4) 11 (7.0)
Higher secondary education 17 (17.7) 47 (29.7)
University degree 50 (52.1) 61 (38.6)
Technical education 11 (11.4) 21 (13.3)
Without education 0 (0.0) 2 (1.3)
Availability of fruits and vegetables at home [n (%)]
Always 168 (58.1) 109 (53.2)
Almost always 85 (29.4) 57 (27.8)
Sometimes 26 (9.0) 29 (14.1)
Rarely 8 (2.8) 7 (3.4)
Never 2 (0.7) 3 (1.5)
Availability of dairy products at home [n (%)]
Always 194 (68.6) 120 (60.0)
Almost always 51 (18.0) 47 (23.5)
Sometimes 21 (7.4) 23 (11.5)
Rarely 13 (4.6) 5 (2.5)
Never 4 (1.4) 5 (2.5)
Availability of breads/cereals at home [n (%)]
Always 157 (55.5) 94 (47.7)
Almost always 69 (24.4) 57 (28.9)
Sometimes 38 (13.4) 35 (17.8)
Rarely 12 (4.2) 9 (4.6)
Never 7 (2.5) 2 (1.0)
Adequacy of sweets/snacks consumption [n (%)]
Always 7 (2.5) 14 (7.2)
Almost always 7 (2.5) 19 (9.7)
Sometimes 88 (31.7) 62 (31.8)
Rarely 90 (32.4) 63 (32.3)
Never 86 (30.9) 37 (19.0)
Availability of sweets/snacks at home [n (%)]
Always 12 (4.3) 16 (8.4)
Almost always 27 (9.6) 28 (14.7)
Sometimes 72 (25.5) 58 (30.4)
Rarely 99 (35.1) 59 (30.9)
Never 72 (25.5) 30 (15.7)
Permission to watch TV during meals [n (%)]
Always 26 (9.2) 69 (34.3)
Almost always 32 (11.3) 39 (19.4)
Sometimes 101 (35.8) 47 (23.4)
Rarely 58 (20.6) 19 (9.5)
Never 65 (23.0) 27 (13.4)
Consumption of fruits/vegetables as a snack without asking permission [n (%)]
Always 122 (43.4) 127 (64.5)
Almost always 49 (17.4) 34 (17.2)
Sometimes 47 (16.7) 13 (6.6)
Rarely 39 (13.9) 9 (4.6)

(Continued on following page)
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TABLE 1 | (Continued) Descriptive statistics of the features included in the predictive model, categorized by age group, South American Youth/Child Cardiovascular and
Environmental (SAYCARE) Study (2015/2016).

Feature Children Adolescents

Never 24 (8.5) 14 (7.1)
Consumption of breads/cereals as a snack without asking permission [n (%)]
Always 71 (25.5) 110 (55.8)
Almost always 32 (11.5) 36 (18.3)
Sometimes 58 (20.9) 17 (8.6)
Rarely 46 (16.6) 15 (7.6)
Never 71 (25.5) 19 (9.7)
Snacks or sweets as a reward or consolation [n (%)]
Always 6 (2.1) 8 (4.0)
Almost always 5 (1.8) 4 (2.0)
Sometimes 52 (18.2) 22 (11.1)
Rarely 67 (23.5) 35 (17.7)
Never 155 (54.4) 129 (65.2)
Strict food rules [n (%)]
Always 85 (30.2) 21 (10.7)
Almost always 75 (26.7) 16 (8.2)
Sometimes 68 (24.2) 37 (18.9)
Rarely 28 (10.0) 35 (17.8)
Never 25 (8.9) 87 (44.4)
Parents’ consumption of sweets/snacks in front of children/adolescents [n (%)]
Always 51 (18.3) 29 (14.9)
Almost always 33 (11.9) 21 (10.8)
Sometimes 71 (25.5) 53 (27.3)
Rarely 49 (17.6) 46 (23.7)
Never 33 (11.9) 45 (23.2)
Satisfaction with snack consumption habits [n (%)]
Always 81 (29.2) 60 (30.9)
Almost always 70 (25.3) 42 (21.7)
Sometimes 64 (23.1) 51 (26.3)
Rarely 35 (12.6) 21 (10.8)
Never 27 (9.7) 20 (10.3)
Pleasant mealtime moments [n (%)]
Always 171 (60.9) 90 (46.1)
Almost always 83 (29.5) 57 (29.2)
Sometimes 20 (7.1) 38 (19.5)
Rarely 5 (1.8) 5 (2.6)
Never 2 (0.7) 5 (2.6)
Parent-child relationship [n (%)]
Always 242 (86.1) 82 (44.8)
Almost always 32 (11.4) 47 (25.7)
Sometimes 6 (2.1) 34 (18.6)
Rarely 0 (0.0) 14 (7.7)
Never 1 (0.4) 6 (3.3)
Happiness at home [n (%)]
Always 231 (83.7) 124 (63.3)
Almost always 32 (11.6) 37 (18.9)
Sometimes 7 (2.5) 25 (12.8)
Rarely 2 (0.7) 5 (2.5)
Never 4 (1.5) 5 (2.5)
Arguments at home in front of the child/adolescent [n (%)]
Always 5 (1.8) 10 (5.1)
Almost always 6 (2.2) 20 (10.2)
Sometimes 67 (24.3) 44 (22.3)
Rarely 112 (40.6) 38 (19.2)
Never 86 (31.1) 38 (19.2)
Overprotection of the child/adolescent [n (%)]
Always 56 (20.0) 65 (32.8)
Almost always 31 (11.1) 17 (8.6)
Sometimes 86 (30.7) 40 (20.2)
Rarely 62 (22.1) 38 (19.2)
Never 45 (16.1) 38 (19.2)
Screen time [n (%)]
<2 h/day 38 (23.5) 53 (20.6)
>2 h/day 124 (76.5) 204 (79.4)

(Continued on following page)
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and classification, to improve model performance and efficiency
when data in the target domain is limited or less informative [32, 33].

In this study, TL was employed to enhance the performance of
machine learning models in the early detection of hypertension in
pediatric populations, specifically children and adolescents. The
TL technique used involves decision tree-based algorithms, where
the trees learned from an initial model (e.g., predicting
hypertension in children) are transferred to a similar
algorithm applied to a different, less robust dataset (e.g.,
adolescents). This incremental learning process improves
model performance on the adolescent sample, which would
otherwise yield suboptimal results if trained exclusively on
its own data.

Initially, the sample of children was used as the source domain
for pre-training the models due to its more consistent and
complete feature set, which provided a strong foundation for
model training. The knowledge acquired during this phase was
then transferred to the adolescent sample, enabling the models to
adapt effectively to the nuances of this population. This approach
was particularly advantageous, as the adolescent sample exhibited
greater variability and a smaller volume of relevant data, making
it an ideal target domain for TL. By utilizing this methodology,
the study optimized the use of available data, ensuring improved
model performance and a more accurate identification of
hypertension across distinct age groups [34, 35].

Model Explanation and Individual Analysis
The SHapley Additive exPlanations (SHAP) method provides an
interpretable approach to understanding machine learning (ML)
models. This model-agnostic technique evaluates the local
contribution of each variable while offering a global
perspective on model performance, including metrics such as

accuracy, relevance, and local consistency. In this study, the
SHAP algorithm was employed to investigate the contribution
and importance of individual features and to analyze the
nonlinear interactions between risk predictors [36].

RESULTS

Table 1 summarizes the demographic, metabolic, and dietary
characteristics of the children and adolescents included in the
study. Most participants attended public schools, with a balanced
distribution of sexes in both age groups. Children and adolescents
showed differences in mean age and waist circumference, with
adolescents displaying greater variability. Dietary habits varied

TABLE 2 | Performance comparison of machine learning models for children and
adolescents without transfer learning (South America, 2015-2016).

Children

Model Accuracy Precision Recall AUC(ROC)

Random Forest 0.90 0.83 0.31 0.71
XGBoost 0.90 0.72 0.50 0.74
LightGBM 0.90 0.72 0.50 0.74
Catboost 0.88 0.71 0.31 0.73

Adolescents

Model Accuracy Precision Recall AUC(ROC)

Random Forest 0.86 0.00 0.00 0.46
XGBoost 0.85 0.00 0.00 0.51
LightGBM 0.86 0.00 0.00 0.53
Catboost 0.86 0.00 0.00 0.56

TABLE 1 | (Continued) Descriptive statistics of the features included in the predictive model, categorized by age group, South American Youth/Child Cardiovascular and
Environmental (SAYCARE) Study (2015/2016).

Feature Children Adolescents

High Blood Pressure [n (%)] 14.1 (50.0) 7.5 (23.0)
Age (mean [±std)] 6.9 (2.3) 14.7 (2.1)
Mean waist circumference [mean (±std)] 59.0 (9.9) 73.5 (9.2)
Sleep duration [mean (±std)] 9.2 (0.9) 8.1 (1.6)
Total Physical Activity [mean (±std)] 65.2 (105.9) 41.9 (48.2)
Duration of exclusive breastfeeding [mean (±std)] 7.9 (11.7) 13.6 (20.4)
Daily fruits consumption in grams [mean (±std)] 08.7 (321.1) 203.4 (388.9)
Daily vegetables consumption in grams [mean (±std)] 58.5 (237.6) 56.6 (130.5)
Daily crackers consumption in grams [mean (±std)] 20.8 (72.9) 30.0 (71.7)
Daily cookies consumption in grams [mean (±std)] 12.7 (51.5) 20.9 (66.1)
Daily filled cookie consumption in grams [mean (±std)] 14.5 (71.6) 42.2 (126.9)
Daily baked goods consumption in grams [mean (±std)] 13.0 (89.1) 23.1 (85.9)
Daily pizza consumption in grams [mean (±std)] 6.4 (17.7) 26.2 (108.9)
Daily hamburger consumption in grams [mean (±std)] 5.5 (14.0) 19.2 (47.9)
Daily breaded meat consumption in grams [mean (±std)] 14.0 (86.1) 40.3 (163.0)
Daily sausage consumption in grams [mean (±std)] 8.8 (59.2) 11.79 (34.9)
Daily cold meat consumption in grams [mean (±std)] 5.9 (27.0) 12.5 (37.6)
Daily fish consumption in grams [mean (±std)] 7.9 (21.5) 18.6 (84.3)
Daily soft drink consumption in grams [mean (±std)] 52.2 (155.0) 128.7 (241.3)
Daily chips consumption in grams [mean (±std)] 5.8 (27.4) 8.8 (34.5)
Daily mayonnaise consumption in grams [mean (±std)] 4.1 (15.4) 8.3 (23.8)
Daily sauces consumption in grams [mean (±std)] 3.7 (9.9) 7.8 (17.4)
Daily finger foods consumption in grams [mean (±std)] 1.8 (8.4) 8.2 (55.9)
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widely, particularly for items such as soft drinks, filled cookies,
and chips, reflecting diverse consumption patterns. Adolescents
generally reported higher intake of most food items than children,
potentially due to differing dietary preferences or caloric needs.

Table 2 compares the performance of different machine
learning models for diagnosing hypertension in children and
adolescents. For children, all models achieved accuracies close to
90% before the application of transfer learning (TL). The Random
Forest model demonstrated the highest precision (0.83), while
XGBoost and LightGBM showed slightly lower values (around
0.72). In terms of recall, XGBoost and LightGBM performed best,
with values of 0.50, followed by Random Forest and CatBoost,
both at 0.31. The models exhibited comparable AUC-ROC,
ranging between 0.71 and 0.74.

For adolescents, the models also achieved high accuracy, with
scores around 0.85 and 0.86. However, their discriminative
ability, as measured by the AUC-ROC, was relatively low.
CatBoost achieved the highest AUC-ROC value at 0.56,
followed by LightGBM (0.53) and XGBoost (0.51). Random
Forest showed the lowest discriminative ability, with an AUC-
ROC of 0.46.

Table 3 presents the results after applying transfer learning to
the models. All models exhibited consistent accuracy at 0.86,
indicating strong overall performance in data classification.
Notably, both LightGBM and CatBoost achieved a precision of
1.0, reflecting their enhanced ability to correctly identify positive
cases and modest improvements compared to previous metrics.
Regarding discriminative ability, as measured by the AUC-ROC,
CatBoost achieved the highest score of 0.82, demonstrating
superior capacity to distinguish between positive and negative
cases after transfer learning.

The SHAP plot (Figure 2A) provides a detailed analysis of the
variables influencing hypertension prediction in the pediatric
population. Key contributors to hypertension prediction
included low physical activity, increased screen time, shorter
sleep duration, higher waist circumference, and greater
consumption of foods such as hamburgers, cold cuts, pizza,
and sausages. Figure 2B illustrates the mean importance of

TABLE 3 | Performance comparison of machine learning models for adolescents
after applying transfer learning (South America, 2015-2016).

Adolescents

Model Accuracy Precision Recall AUC(ROC)

XGBoost 0.86 0.50 0.06 0.77
LightGBM 0.86 1.0 0.06 0.72
Catboost 0.86 1.0 0.18 0.82

FIGURE 2 | SHapley Additive exPlanations (SHAP) Analysis {[Buenos Aires (Argentina), Lima (Peru), Medellin (Colombia), Montevideo (Uruguay), Santiago (Chile),
and São Paulo and Teresina (Brazil). 2015/2016]}.
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these variables, offering a comprehensive view of their relative
impact on the model. These findings provide valuable insights for
the development of targeted preventive strategies and
interventions to address hypertension in this age group.

DISCUSSION

In this multicentric observational study, algorithms were
developed and evaluated to predict the presence of
hypertension in the pediatric population across seven South
American cities. The results demonstrate an improvement in
predictive performance with the application of transfer learning
(TL) in this population.

Hypertension prevention strategies can target the general
population or specific high-risk groups. The increasing
demand for early identification of at-risk individuals who
could benefit from preventive interventions has driven interest
in predictive models for hypertension [23]. While numerous
models have been developed for the adult population using
both traditional regression-based approaches and machine
learning methods, there is a notable gap in pediatric-focused
models [24, 32], because Pediatric hypertension affects
approximately 11% of boys and 9.6% of girls globally,
presenting a significant public health concern that the
American Heart Association has recently highlighted as critical
to address [37, 38].

This study builds on prior research by applying TL to predict
hypertension in the pediatric population, proving it to be an effective
strategy. A substantial sample of children was used to pre-train a
model, which was then fine-tuned using the adolescent sample [34].
This approach leveraged general features from the larger and more
robust dataset to adapt to the specific characteristics of adolescents.
The results revealed a significant improvement in the AUC-ROC,
highlighting themodel’s enhanced ability to differentiate adolescents
at risk for hypertension. These findings underscore the potential of
TL in data-scarce contexts, maximizing the utility of available
information and improving generalization and accuracy in
predictions [35].

TL is a cornerstone of artificial intelligence (AI), enabling the
reuse of pre-trained models for new tasks, thereby saving time
and computational resources. This technique is particularly
valuable in domains where acquiring large volumes of labeled
data is challenging or costly. Studies have demonstrated that TL
accelerates the development of AI solutions by leveraging
knowledge from previously learned tasks, enhancing model
efficiency and effectiveness [39]. Furthermore, TL
democratizes AI by making advanced solutions accessible to
organizations with limited resources, reducing the dependency
on extensive datasets or advanced computing infrastructure. In
healthcare, TL significantly enhances the predictive capabilities of
models and broadens the applicability of AI technologies for early
detection and disease management [3].

Although the application of SHAP in predicting hypertension
in the pediatric population is still limited, recent studies have
explored its use in related contexts. One study utilized SHAP to
interpret machine learning models for hypertension risk

prediction, identifying significant risk factors such as elevated
LDL cholesterol levels and low HDL cholesterol levels [40, 41].

Our findings, corroborated by SHAP analysis, are consistent
with existing literature linking sedentary lifestyles and diets high
in processed foods to an increased risk of hypertension. The
results emphasize the importance of interventions focused on
promoting physical activity and healthy eating habits from
childhood as crucial strategies for preventing hypertension and
promoting long-term cardiovascular health. The inclusion of
public policies and educational programs aimed at reducing
screen time and improving sleep quality can also play a vital
role in mitigating these risk factors [42].

Working with pediatric data to predict arterial hypertension
presents several limitations that may impact the accuracy and
applicability of predictive models. First, the inherent biological
variability in growth and development during childhood leads to
significant variations in physiological parameters, including
blood pressure [43]. This variability makes the creation of
robust and consistent predictive models a substantial
challenge. Additionally, the definition of hypertension in
children is based on age-, sex-, and height-adjusted percentiles,
which adds a layer of complexity to standardizing diagnostic
criteria and comparing different studies [36, 44]. Another
limitation is data availability. Compared to adults, there is a
significantly smaller amount of data on childhood hypertension,
making it difficult to identify robust patterns and validate
predictive models.

This study has certain limitations that should be acknowledged.
The relatively small sample size, particularly for the adolescent group,
may impact the generalizability and robustness of the findings [4]. To
address these limitations, a feasibility pilot study was conducted to
validate the reliability of the methods, and statistical adjustments
were made to account for the sample structure. Despite these
constraints, the study provides valuable insights into the early
detection of hypertension in pediatric populations and highlights
the need for future research with larger, more diverse samples to
validate and extend the present findings.

Therefore, it is essential to continue expanding pediatric
databases, improve data collection methods, standardize
diagnostic criteria, and develop algorithms that consider the
variability and particularities of the pediatric population to
overcome these limitations and enhance the accuracy of
predictive models [45, 46].

These findings have significant implications for developing
intervention strategies and health policies to prevent and manage
childhood hypertension. They highlight the potential of AI-based
modeling approaches to identify and analyze risk factors in public
health. Moreover, the results underscore the importance of
individualized health promotion strategies that account for the
diverse needs and behaviors of pediatric populations.

Conclusion
Machine learning models effectively identified key dietary
predictors of elevated blood pressure in children and
adolescents. High consumption of soft drinks, filled cookies,
and chips were identified as significant risk factors, with
adolescents exhibiting a higher intake of these foods compared
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to children. These findings emphasize the critical need to address
unhealthy dietary habits through early prevention strategies
aimed at reducing the risk of hypertension and fostering
cardiovascular health in pediatric populations.
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